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Internet Of Things

Vision of the Department

To be recognized for keeping innovation, research and excellence abreast of learning in the field

of computer science & engineering to cater the global society.

Mission of the Department

M1:  To provide an exceptional learning environment with academic excellence in the field of

computer science and engineering.

M2:  To facilitate the students for research and innovation in the field of software, hardware

and computer applications and nurturing to cater the global society.

M3:  To establish professional relationships with industrial and research organisations to enable

the students to be updated of the recent technological advancements. 

M4:   To groom the learners for being the software professionals catering the needs of modern

society with ethics, moral values and full of patriotism.  

Program Educational Objectives (PEO’s)

PEO1:  The graduate will have the knowledge and skills of major domains of computer science
and engineering in providing solution to real world problems most efficiently.

PEO2: The graduate will be able to create and use the modern tools and procedures followed in
the software industry in the relevant domain.

PEO3:  The  graduate  will  be  following  the  ethical  practices  of  the  software  industry  and
contributing to the society as a responsible citizen. 

PEO4: The graduate will have the innovative mindset of learning and implementing the latest

             developments and research outcomes in the computer hardware and software to keep pace

             with the fast changing socio economic world.
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COURSE OUTCOMES

CO1: Discuss Internet of Things and its hardware and software components

CO2: Design Interface I/O devices, sensors &amp; communication modules.

CO3: Analyze data from various sources in real-time

CO4: Monitor data and devices with remote control.

CO5: Develop real life IoT based projects.

LIST OF EXPERIMENTS

1. To study IOT, their characteristics of components and basic awareness of Arduino/ Raspberry

Pi.

2. To study various supporting OS platforms for Raspberry-Pi /Beagle board.

3. Study of Connectivity and Configuration of Raspberry-Pi/ Beagle Board circuit with basic

peripherals, LEDs, Understanding GPIO and its use in program.

4. Experiment on connectivity of Rasberry Pi with existing system components.

5. Experiment on application framework and embedded software agents for IoT Toolkit.

6. Experiment on HTTP-to-COAP semantic mapping Proxy in IoT Toolkit.

7. Experiment on Gate way as a service deployment in IoT Toolkit.

8. Experiment on application framework and embedded software agents for IoT Toolkit.

9. Exercise on working principle of Rasberry Pi.

10. Experiment on connectivity of Rasberry Pi with existing system components.
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EXPERIMENT -1

Aim: To study IOT, their characteristics of components and basic awareness of Arduino/

Raspberry Pi.

Theory

The Internet of Things (IoT) is a scenario in which objects, animals or people are provided with

single identifiers and the capability to automatically transfer and the capability to automatically

transfer  data  more  to  a  network  without  requiring  human-to-human  or  human-to-computer

communication.

 

Arduino Board

1. An Arduino is actually a microcontroller based kit

2. It is basically used in communications and in controlling or operating many devices

3. Arduino UNO board is the most popular board in the Arduino board family

4. In addition, it is the best board to get started with electronics and coding

5. Some boards look a bit different from the one given below, but most Arduino’s have majority

of these components in common

6. It consists of two memories- Program memory and the data memory. 

7. The code is  stored in  the flash program memory, whereas the data is  stored in the data

memory. 

8. Arduino Uno consists  of  14 digital  input/output  pins  (of  which 6 can be  used as PWM

outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button.
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Various components on the Arduino board is shown in fig 1 and its brief description below:

1. Power USB

Arduino board can be powered by using the USB cable from your computer. All you need to do

is connect the USB cable to the USB connection (1).

Fig 1 Components used in Arduino

2. Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it to the

Barrel Jack (2).

3.Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board and

stabilize the DC voltages used by the processor and other elements.

4. Crystal Oscillator
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The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate

time? The answer is, by using the crystal oscillator. The number printed on top of the Arduino

crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

5, 17. Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can reset the

UNO board in two ways. First, by using the reset button (17) on the board. Second, you can

connect an external reset button to the Arduino pin labelled RESET (5).

6, 7, 8, 9.Pins (3.3, 5, GND,Vin)

• 3.3V (6) − Supply 3.3 output volt

• 5V (7) − Supply 5 output volt

• Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.

• GND (8)(Ground) − There are several GND pins on the Arduino, any of which can be used to

ground your circuit.

• Vin (9) − This pin also can be used to power the Arduino board from an external power source,

like AC mains power supply.

10. Analog pins

The Arduino UNO board has six analog input pins A0 through A5. These pins can read the

signal from an analog sensor like the humidity sensor or temperature sensor and convert it into a

digital value that can be read by the microprocessor.

11. Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of your

board. The main IC (integrated circuit) on the Arduino is slightly different from board to board.

The microcontrollers are usually of the ATMEL Company. You must know what IC your board

has before loading up a new program from the Arduino IDE. This information is available on the

top of the IC. For more details about the IC construction and functions, you can refer to the data

sheet.
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12. ICSP pin

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of MOSI,

MISO,  SCK,  RESET,  VCC,  and  GND.  It  is  often  referred  to  as  an  SPI  (Serial  Peripheral

Interface), which could be considered as an "expansion" of the output. Actually, you are slaving

the output device to the master of the SPI bus.

13. Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate that your

board is powered up correctly. If this light does not turn on, then there is something wrong with

the connection.

14. TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in two

places  on  the  Arduino  UNO  board.  First,  at  the  digital  pins  0  and  1,  to  indicate  the  pins

responsible for serial communication. Second, the TX and RX led (13). The TX led flashes with

different speed while sending the serial data. The speed of flashing depends on the baud rate

used by the board. RX flashes during the receiving process.

15. Digital I/O

 The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse  Width

Modulation) output. These pins can be configured to work as input digital pins to read logic

values (0 or 1) or as digital output pins to drive different modules like LEDs,  relays, etc. The

pins labeled “~” can be used to generate PWM.

16. AREF

AREF stands for Analog Reference. It is sometimes, used to set an external reference voltage

(between 0 and 5 Volts) as the upper limit for the analog input pins.

Program an Arduino
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1. The most important advantage with Arduino is the programs can be directly loaded to the

device without requiring any hardware programmer to burn the program.

2. This  is  done  because  of  the  presence  of  the  0.5KB of  Bootloader  which  allows  the

program to be burned into the circuit.

3. All we have to do is to download the Arduino software and writing the code.

4. The Arduino tool window consists of the toolbar with the buttons like verify, upload,

new, open, save, serial monitor.

5. It  also consists of a text editor to write the code,  a message area which displays the

feedback like showing the errors, the text console which displays the output and a series

of menus like the File, Edit, and Tools menu.

Basic Adruino functions are:

1. digitalRead(pin): Reads the digital value at the given pin.

2. digitalWrite(pin, value): Writes the digital value to the given pin.

3. pinMode(pin, mode): Sets the pin to input or output mode.

4. analogRead(pin): Reads and returns the value.

5. analogWrite(pin, value): Writes the value to that pin.
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EXPERIMENT -2

Aim: To study various supporting OS platforms for Raspberry-Pi /Beagle board.

Theory

Internet of Things: -  The Internet of Things refers to the ever-growing network of physical

objects that feature an IP address for internet connectivity, and the communication that occurs

between these objects and other Internet-enabled devices and systems. The Internet of Things

(IoT) refers to the use of intelligently connected devices and systems to leverage data gathered

by embedded sensors and actuators in machines and other physical objects.

Examples of IoT

1) Apple Watch and Home Kit.

2) Smart Refrigerator.

3) Smart Refrigerator.

4) Smart cars.

5) Google Glass.

6) Smart thermostats.

Raspberry-Pi:-The Raspberry Pis a series of small single-board computers developed in the

United Kingdom by the Raspberry Pi Foundation to promote teaching of basic computer science

in schools and in developing countries. It does not include peripherals (such as keyboards and

mice).  The Raspberry Pis a  low cost,  credit-card sized computer  that  plugs into a  computer

monitor or TV, and uses a standard keyboard and mouse. It is a capable little device that enables

people of all ages to explore computing, and to learn how to program in languages like Scratch

and Python. The Raspberry Pis a credit-card-sized computer that costs between $5 and $35. It's

available anywhere in the world, and can function as a proper desktop computer or be used to

build  smart  devices.  A  Raspberry  Pi  is  a  general-purpose  computer,  usually  with  a  Linux

operating system, and the ability to run multiple programs. Raspberry Pi is like the brain. Its
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primary advantage comes in processing higher level processing capability. It’s a single board

computer.

Theory: 
1. Raspberry-Pi: - 
 
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom
by the 
Raspberry Pi Foundation to promote teaching of basic computer science in schools and in 
Theory: 
1. Raspberry-Pi: - 
 
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom
by the 
Raspberry Pi Foundation to promote teaching of basic computer science in schools and in 
Theory: 
1. Raspberry-Pi: - 
 
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom
by the 
Raspberry Pi Foundation to promote teaching of basic computer science in schools and in 
Theory: 
1. Raspberry-Pi: - 
 
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom
by the 
Raspberry Pi Foundation to promote teaching of basic computer science in schools and in 
Theory: 
1. Raspberry-Pi: - 
 
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom
by the 
Raspberry Pi Foundation to promote teaching of basic computer science in schools and i
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Fig 2. Raspberry-Pi Architecture

Various components on the Raspberry Pi board:

ARM CPU/GPU: This is a Broadcom BCM2835 System on a Chip (SoC) that's made up of an

ARM central processing unit (CPU) and a Video core 4 graphics processing unit (GPU). The

CPU handles all the computations that make a computer work (taking input, doing calculations

and producing output), and the GPU handles graphics output.  

GPIO: These are exposed general-purpose input/output connection points that will allow the real

hardware hobbyists the opportunity to tinker.  

RCA: An RCA jack allows connection of analog TVs and other similar output devices.

Audio out: This is a standard 3.55-millimeter jack for connection of audio output devices such

as headphones or speakers. 

Beagle Board: - The Beagle Board is a low-power open-source single-board computer produced

by Texas Instruments in association with Digi-Key and Newark element14. The Beagle Board

was  also  designed  with  open  source  software  development  in  mind,  and  as  a  way  of

demonstrating  the  Texas  Instrument's  OMAP3530  system-on-a-chip.[8]  The  board  was

developed by a small team of engineers as an educational board that could be used in colleges

around the world to teach open source hardware and software capabilities. It is also sold to the

public under the Creative Commons share-alike license. The board was designed using Cadence

OrCAD for schematics and Cadence Allegro for PCB manufacturing; no simulation software

was used.

EXPERIMENT -3

Aim: Study of Connectivity and Configuration of Raspberry-Pi/ Beagle Board circuit with

basic peripherals, LEDs, Understanding GPIO and its use in program.

Theory 

Connecting  Hardware  Peripherals  to  Raspberry-Pi  board.  Raspberry-Pi  setup  through  SSH

(Headless Configuration of Raspberry-Pi-3 (VNC, Putti)).

How to Connect a Raspberry-Pi to the Laptop or PC Display
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Required devices:

1. Raspberry Pi

2. Ethernet Cable

3. Laptop/ PC

4. SD Card with Raspbian

5. Micro USB Cable

How does it Work?

To connect a Raspberry Pi to a laptop or PC display, you can simply use an Ethernet cable.

The  Raspberry  Pi’s  desktop  GUI  can  be  viewed  through  the  laptop  or  PC display  using  a

100mbps

Ethernet connection between the two.

We used VNC server software to connect the Raspberry-Pi to our laptop or PC.

Installing the VNC server on your Raspberry-Pi allows you to see the Raspberry Pi’s desktop

remotely.

1. Setting up your Raspberry Pi

2. Install Raspbian OS on blank SD card.

3. Insert this SD card into Raspberry-Pi board.

4. Connect micro USB cable to power the Raspberry-Pi.

5. Sharing Internet Over Ethernet in Window OS

This step explains how you can share your laptop or PC with the Raspberry Pi via Ethernet cable.

To share internet with multiple users over Ethernet, go to Network and Sharing Center.

Then click on the WiFi network. Double click on Wireless area connection. Click on Properties

Go to “Sharing” tab and click on “Allow other network users to connect”.

After this, make sure that the networking connection is changed to “Local Area Connection”

Now, to check the IP assigned to the network established, click on the new local area connection

link created:

Now open command prompt.
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Ping the broadcast address of your IP. (Type) E.g. : ping 192.168.137.1

Stop the ping after 5 seconds.

To get the IP address of Raspberry Pi in the established network, use the Software “Advance

IP Scanner”. It is free software.

Setting up the VNC Server to Connect Your Raspberry Pi to the Laptop or PC Display

First install VNC server and Putty on your laptop/ PC

Open Putty Software, and enter login ID: pi and Password: raspberry.

After that, enter commands into Putty i.e,

You will be prompted to enter and confirm a password.

This will be asked only once, during first time setup.

Enter an 8 digit password. Setting Up the Client Side (Laptop or PC) Download VNC client and

install it.

When you first run VNC viewer, enter the IP address of your Raspberry Pi given dynamically by

your laptop and append with : 1(denoting port number) and press connect.

You will get a warning message, press ‘Continue’. Enter the 8 digit password which was entered

in the VNC server installation on your Raspberry Pi. Finally, the Raspberry Pi desktop should

appear as a VNC window. You will be able to access the GUI and do everything as if you are

using the Pi’s keyboard, mouse, and monitor directly.

GPIO

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose input/output) pins 

along the top edge of the board. A 40-pin GPIO header is found on all current Raspberry Pi

boards (unpopulated on Pi Zero and Pi Zero W). Prior to the Pi 1 Model B+ (2014), boards

comprised a shorter 26-pin header

Voltages

Two 5V pins and two 3V3 pins are present on the board, as well as a number of ground pins

(0V), which are unconfigurable. The remaining pins are all general purpose 3V3

Pins, meaning outputs are set to 3V3 and inputs are 3V3-tolerant.
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EXPE  R  IME  N  T   N  O. 4  

Aim: Experiment on connectivity of Rasberry Pi with existing system components.

Theory

The raspberry pi comes in two models, they are model A and model B. The main difference

between model A and model B is USB port. Model A board will consume less power and that

does not include an Ethernet port. But, the model B board includes an Ethernet port and designed
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in china. The raspberry pi comes with a set of open source technologies, i.e. communication and

multimedia web technologies.In the year 2014, the foundation of the raspberry pi board launched

the computer module, that packages a model B raspberry pi board into module for use as a part

of embedded systems, to encourage their use.

Raspberry Pi Hardware Specifications

The raspberry pi board comprises a program memory (RAM), processor and graphics chip, CPU,

GPU, Ethernet  port,  GPIO pins,  Xbee socket,  UART, power source connector.  And various

interfaces for other external devices. It also requires mass storage, for that we use an SD flash

memory card. So that raspberry pi board will boot from this SD card similarly as a PC boots up

into windows from its hard disk.

Essential hardware specifications of raspberry pi board mainly include SD card containing Linux

OS, US keyboard,  monitor,  power supply and video cable.  Optional  hardware specifications

include USB mouse, powered USB hub, case, internet connection, the Model A or B: USB WiFi

adaptor is used and internet connection to Model B is LAN cable.

GPU (Graphics Processing Unit)

The GPU is a specialized chip in the raspberry pi board and that is designed to speed up the

operation of image calculations. This board designed with a Broadcom video core IV and it

supports OpenGL

Ethernet Port

The Ethernet port of the raspberry pi is the main gateway for communicating with additional

devices. The raspberry pi Ethernet port is used  to plug your home router to access the internet.

GPIO Pins

The general purpose input & output pins are used in the raspberry pi to associate with the other

electronic  boards.  These  pins  can  accept  input  & output  commands  based on programming

raspberry pi. The raspberry pi affords digital GPIO pins. These pins are used to connect other
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electronic components. For example, you can connect it to the temperature sensor to transmit

digital data.

XBee Socket

The XBee socket is used in raspberry pi board for the wireless communication purpose.

Power Source Connector

The power source cable is a small  switch, which  is placed on side of the shield.  The main

purpose of the power source connector is to enable an external power source.

UART

The Universal Asynchronous Receiver/ Transmitter is a serial input & output port. That can be

used to transfer the serial data in the form of text and it is useful for converting the debugging

code.

Display

The  connection  options  of  the  raspberry  pi  board  are  two  types  such  as  HDMI  and

Composite.Many LCD and HD TV monitors can be attached using an HDMI male cable and

with a low-cost adaptor. The versions of HDMI are 1.3 and 1.4 are supported and 1.4 version

cable is recommended. The O/Ps of the Raspberry Pi audio and video through HMDI, but does

not  support  HDMI I/p.  Older  TVs can  be  connected  using  composite  video.  When using  a

composite video connection, audio is available from the 3.5mm jack socket and can be sent to 

your TV. To send audio to your TV, you need a cable which adjusts from 3.5mm to double RCA

connectors.

Model a Raspberry Pi Board

The Raspberry  Pi  board is  a  Broadcom (BCM2835)  SOC (system on chip)  board.  It  comes

equipped with an ARM1176JZF-S core CPU, 256 MB of SDRAM and 700 MHz,. The raspberry

pi USB 2.0 ports use only external data connectivity options. The board draws its power from a

micro USB adapter, with min range of 2. Watts (500 MA). The graphics, specialized chip is
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designed to speed up the operation of image calculations. This is in built with Broadcom video

core IV cable, that is useful if you want to run a game and video through your raspberry pi.

Features of Raspberry PI Model A

 The Model A raspberry pi features mainly includes

 256 MB SDRAM memory

 Single 2.0 USB connector

 Dual Core Video Core IV Multimedia coprocessor

 HDMI (rev 1.3 & 1.4) Composite RCA (PAL and NTSC) Video Out

 3.5 MM Jack, HDMI, Audio Out

 SD, MMC, SDIO Card slot on board storage

 Linux Operating system

 Broadcom BCM2835 SoC full HD multimedia processor

 8.6cm*5.4cm*1.5cm dimensions

EXPERIMENT -5

Aim:  Experiment  on  application  framework  and  embedded  software  agents  for  IoT

Toolkit.

An embedded framework is a set of tools used by software developers to build programs for
specific  applications  .  The  proposed  embedded  framework  aims  to  assist  the  developers  in
configuring and interacting with the microcontrollers’ peripherals seamlessly and independently
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of the hardware specifics. Embedded systems represent the core of the IoT devices that requires
the capability to sense, actuate, and communicate within a network infrastructure. Although IoT
devices  target  different  application  domains,  they  share  common design  challenges  to  build
optimal and cost-effective heterogeneous sensors and actuator networks.

Typically, embedded software professionals deal with multiple microcontroller platforms to

deliver cost-effective solutions for final product deployment. Therefore, they spend a relevant

amount  of  time  analyzing  hardware  specifications  and  configuring  device  peripherals;  also,

application software reusability across platforms is limited by hardware differences. This section

presents a comparative analysis of development tools based on the common requirements for IoT

solutions, then the proposed framework and code generator design and implementation details

are presented.

2.1. Internet of Things Design and Development Tools

Broadly speaking, an IoT system architecture is composed of three layers: the perception

layer, the network layer, and the application layer. The perception or sensing layer is composed

of heterogeneous smart and interconnected devices that interact with physical objects to measure,

collect,  and  process  their  state  information  while  transmitting  data  into  the  IoT  network  .

Different communication technologies in the network layer, such as Bluetooth, Zigbee, Wifi,

LoRa, LTE, and 5G, are used to transfer data from the devices to a cloud server for further

analysis and decision-making that takes place in the application layer.

An  IoT  device  comprises  a  microcontroller,  sensors,  actuators,  a  communication

transceiver,  and a power unit,  as depicted in Figure 1.  To implement the interface with the

sensor, the microcontroller requires the use of an analog-to-digital converter unit (ADC), while

the interface with the actuator requires a digital-to-analog unit (DAC), which may include the

use of on/off or pulse width modulated (PWM) signals. On the other hand, the interface with the

transceiver  is  typically  implemented  through  serial  communication  using  protocols  such  as

UART (universal asynchronous receiver transmitter), SPI (serial peripheral interface), and I2C

(inter-integrated  circuit),  among  others.  Examples  of  implementations  of  IoT  devices  for

different  applications  that  include  these  functional  elements  can  be  found  in

[41,42,43,44,45,46,47].

https://www.mdpi.com/2079-9292/11/24/4158#B47-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B46-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B45-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B44-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B43-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B42-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#B41-electronics-11-04158
https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f001


 LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-801

Internet Of Things

Figure 1. Basic functional elements of an IoT device.

IoT  devices  typically  operate  with  energy,  memory,  and  computational  constraints;

therefore, designers must select the adequate microcontroller according to the specific needs of

the  applications  to  implement  cost-effective  solutions.  For  example,  high-performance

microcontrollers may be too expensive for basic IoT devices, while low-end microcontrollers

may not have enough computational power to support more complex IoT tasks. Additionally, the

software  developer  must  consider  memory  management  and  energy  consumption  when

implementing the algorithms for IoT devices.

Based on these previous development requirements, Table 1 summarizes the comparative

analysis  of  different  software  development  frameworks  conducted  to  evaluate  the  following

features:

 Software Development Framework Architecture

The proposed software development framework has been designed to allow the migration of an

IoT application code into any microcontroller regardless of its family, architecture, and vendor.

This allows faster code development, promotes code reusability, and encourages developers to

select the adequate microcontroller according to the application requirements.

The framework architecture has been divided into a static element, a dynamic element, and a set

of wrappers. Figure 2 shows the architecture of a typical embedded application that uses the

framework, which contains the application code, an optional operating system, the framework,

https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f002
https://www.mdpi.com/2079-9292/11/24/4158#table_body_display_electronics-11-04158-t001
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and vendor drivers. The architecture allows either the use of an embedded operating system-

based implementation or the bare-metal approach.

Figure  2. Architecture  of  an  embedded  application  using  the  framework  as  a  software

development tool.

The application code includes the software modules that do not directly interface with the

hardware, but they implement functions and sequential logic required for the system to behave

according  to  the  device  requirements.  Even  though  this  element  is  represented  as  a  single

module,  it  can  contain  several  modules,  each  in  charge  of  specific  functionality  of  the  IoT

device, e.g., network communication, control algorithm, and data acquisition.

The driver element is composed of different code files, which the microcontroller vendors

usually provide. These files contain functions, definitions, and data types that can be used to

configure and use the different elements in the device, such as general purpose input/output pins
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and clock sources, among others. The drivers are specific for each microcontroller, and there

might be huge differences among them, even if they come from the same vendor.

The three elements that compose the framework are: static, dynamic, and vendor wrappers.

The static element’s primary function is to abstract the different operations that can be performed

with  the  microcontroller  and  its  peripherals.  The  functions  defined  within  this  element  are

generic in order to be able to handle the peripherals without knowing any specific information

about the microcontroller  being used. This element acts  as a bridge between the application

module and the other framework elements, and since it contains generic functions, it allows the

application code that uses the framework to be used in any microcontroller without requiring any

modification. Each peripheral in the microcontroller requires a set of files for the static element

(peripheral.h and peripheral.c files), and every microcontroller supported by the framework can

reuse this.

The dynamic element contains the files produced by the code generator, which contain the

description of how each peripheral  used by the application should be configured.  The static

element consumes these files in order to perform this configuration. The files from this element

are  application-specific  and,  therefore,  must  be  one  set  of  files  for  each  peripheral  used

(peripheral_cfg.c and peripheral_cfg.h files).

The  wrappers  act  as  translators  between  the  functions  from the  static  element  and the

functions contained within the vendor drivers. These files contain generic labels connected with

data types and definitions from the vendor drivers. The wrappers also contain functions from the

static element that make direct calls to the code contained within the drivers to interact with the

peripherals. These labels and functions allow portability in the application module between the

different  supported  microcontrollers  because  they  are  defined  in  the  wrappers  of  every

microcontroller. The application module needs to call the functions from the static element using

these  labels,  and  the  framework  will  translate  and  perform  the  desired  operation  in  the

microcontroller. Since the wrappers depend on the microcontroller characteristics, a set of these

files (peripheral_wrapper.c and peripheral_wrapper.h files) must be created for each peripheral

contained in each microcontroller supported by the framework.

2.3. Supported Peripherals

The peripherals  that  are  currently  supported by  the  framework are  the  general  purpose

input/outputs (GPIOs), the analog-to-digital converter (ADC), and the universal asynchronous

receiver-transmitter (UART). These represent the essential elements for an IoT device.

The  GPIO  framework  element  is  formed  by  the  files gpio.c and gpio.h for  the  static

element, gpio_cfg.c and gpio_cfg.h for the dynamic.c and gpio_wrapper.h for the wrappers. This

module  allows  the  user  to  configure  the  following  fields  on  any  GPIO  contained  in  a

microcontroller: mode (input, output, or used by a microcontroller peripheral), pull resistor (pull-
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up, pull-down, or none),  speed (if  supported),  output  type (open drain or push-pull)  and the

alternate mode, in the case a peripheral is using the GPIO as another function such as UART or

ADC. The framework also allows the user to read and write either to individual pins or the

complete  port  in  the  microcontroller.  The  currently  supported  GPIO  functions  are  shown

in Figure 3.

Figure 3. General Purpose Input/Outputs functions diagram.

The ADC framework module is formed by the files adc.c and adc.h for the static element,

files adc_cfg.c and adc_cfg.h for  the  dynamic  element,  and  .c and adc_wrapper.h for  the

wrappers. This module allows the user to configure the following fields on any ADC contained

in the microcontroller: the clock source, the clock pre-scaler, conversion channel, resolution in

bits, number of samples, voltage reference, and the justification (right or left) to store the result

in  a  register.  The  framework  also  allows  the  user  to  enable  or  disable  the  ADC,  start  a

conversion,  check  the  conversion  status,  and get  the  conversion  result  for  any  ADC in  the

microcontroller. The supported functions are illustrated in Figure 4.

https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f004
https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f003
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Figure 4. Analog-to-Digital Converter functions diagram.

The  UART  framework  module  is  formed  by  the  files uart.c and uart.h for  the  static

element, uart_cfg.c and uart_cfg.h for  the  dynamic  element,

and uart_wrapper.c and uart_wrapper.h for  the  wrappers.  This  module  allows  the  user  to

configure the following fields on any UART contained within the microcontroller:  the clock

source, the clock pre-scaler, the baud rate, the number of stop bits, the number of data bits, and

the parity (even, odd, or no parity). The framework also allows the user to enable or disable the

UART and send or receive data through the polling method. The UART functions are shown

in Figure 5.

https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f005
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Figure 5. Universal Asynchronous Receiver-Transmitter functions diagram.

2.4. Code Generator Implementation

The code generator  consists  of  a  desktop application that  allows  the  user  to  select  the

project’s  microcontroller,  configure  peripherals,  create  the  dynamics  elements,  and  integrate

them  into  the  framework. Figure  6 shows  the  software  modules  that  implement  the

code generator.

Figure  6. Implementation  of  the  code  generator  that  provides  the  dynamic  elements  to  the

framework.

https://www.mdpi.com/2079-9292/11/24/4158#fig_body_display_electronics-11-04158-f006
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EXPE  R  IME  N  T   N  O. 6  

Aim - Experiment on HTTP-to-COAP semantic mapping Proxy in IoT Toolkit.Tcl

When discussing the state of current standardization I often find myself having to think through

on how to summarize and simplify what a draft is about. I find that exercise very useful and I

thought of providing a series of short summaries about the drafts the WG is currently working

on.

The point of the draft (soon RFC) is to describe how to do HTTP-to-CoAP Mapping to allow

HTTP clients  to  access  a  CoAP Server  via  a  proxy.  This  works  under  the assumption that,

despite the similarities between CoAP and HTTP, not all browsers will implement support for it

and that some legacy devices will need proxying. Another assumption is that users will like to

use their smartphones with their home sensors. The set up would look like this:
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 HTTP-to_CoAP Mapping Scenario with world-class graphics 

The mapping is fairly straightforward as CoAP is designed to mirror HTTP. In its  simple form,
you simply append one URI after the other, for example:

http://p.example.com/hc/coap://s.example.com/light

If you are using other mappings, you might do a search on ./well-known/core to discover them,
they should be using resource type: core.hc and attribute type hct.

In  the enhanced  form more  sophisticated  mappings  can  be  expressed.  And  certain  template
variables have been created for it:

s  = "coap" / "coaps"

hp = host [":" port]  

p  = path-abempty     

q  = query           

qq = [ "?" query}]

The ABNF forms make use of RFC5234, RFC7252 and RFC6690, for simplicity you can check
the list of CoAP-related ABNF forms I made. Thanks to all this, we can specify for example that
we want to use secure CoAP and query for lights that are on.

Req:  GET http://p.example.com/hc?s=coaps&hp=s.example.com&p=/light&q=on

Discovery is also important both on the HTTP and the CoAP side. A sample HTTP discovery on
the proxy would look like this:

Req:  GET /.well-known/core?rt=core.hc HTTP/1.1

      Host: p.example.com

Res:  HTTP/1.1 200 OK

      Content-Type: application/link-format

      Content-Length: 18

  // if plain link-format

http://jaimejim.github.io/temp/coap-abnf
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  </hc>;rt="core.hc"

  // if JSON link-format

  [{"href":"/hc","rt":"core.hc"}]

If it is the CoAP devices that are querying the proxy, they should also get back an anchor URI of
the HC proxy as well as the URI mapping.

Req:  GET coap://[ff02::1]/.well-known/core?rt=core.hc

Res:  2.05 Content

      </hc>;anchor="http://p.example.com";

      rt="core.hc";hct="?uri={+tu}"

The HC proxy also  performs bidirectional Media  Type Mapping of Media  Types and content
encodings into CoAP Content-Formats

The mapping will depend on whether the application is tightly or loosely coupled with the proxy.
For HTTP unsupported media types the HC Proxy should simply answer with a 415 Unsupported
Media Type response. When dealing with an unrecognised CoAP “cf” the HC proxy can use
the application/coap-payload and  append  that  content  format ;cf= whichever  is  the  content
format number.

Although possible, content transcoding is generally not advisable as it would tamper the payload
and might cause loss of information (and mess other things in general).

At a really high level view, that is what the draft is about, if you are interested I really encourage
you to read the draft, and if you want to use it there are several implementations available:

1. Squid HTTP-CoAP mapping module.  

2. HTTP-CoAP proxy based on EvCoAP.  

3. Luebeck implementa琀椀on  

4. Californium also supports a HTTP-CoAP proxy func琀椀on but they do not explicitly state that
it is based on the draft.

http://www.eclipse.org/californium/
http://core.ietf.narkive.com/d4MCPLLl/http-coap-proxy-setup
https://github.com/koanlogic/webthings/tree/master/bridge/sw/lib/evcoap
http://telecom.dei.unipd.it/iot
https://tools.ietf.org/html/rfc7252#section-12.3
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.1
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Experiment-7

Aim: Experiment on Gate way as a service deployment in IoT Toolkit

IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking
technologies. 
Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects  are  resource-
constrained devices, and require competent communication protocol for energy efficiency. 
First wave of IoT application in smart city domain emphasized on connecting sensor interfacing 
with physical-world using lightweight protocols such as CoAP and XMPP [5][6]. In later stages, 
traditional Internet state transfer protocol such  as REST is used for  similar applications, where 
event-centric frameworks had been implemented to reduce number of messages transmitted [7]. 
The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing first wave of 
IoT  devices  [8].  Although  these  devices  do  not  utilize  semantic  technologies,  they
provide 
higher-level of awareness from the sensor than just plain raw sensor data.  
The  IoT  domain  has  been  started  getting  congested  with  heterogeneous  applications  using 
different communication protocols and data models [9]. Various organizations such as Open IoT 
alliance, AllSeen alliance, and IPSO alliance are working on standardization of communication 
protocols   to   provide   interoperability   between   various   vendors   silos   [10][11][12].
Organization 
such as  Internet  Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying
to 
scale  their  messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other
protocols. 
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These efforts are scattered and largely focus on solving problems around one protocol instead of 
providing integration solution. 
In  Web-centric  infrastructure,  acquisition  of  contextual  information  from  raw  sensor  data 
requires annotation of sensor data with semantic metadata. Key standardization efforts that have 
sought to establish sensor data models for sensors to be accessible and controllable via the Web 
include: 
•  OGC Sensor Web Enablement (SWE) 
The  SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following 
important specifications: Observation & Measurement (O&M), Sensor Model Language 
(SensorML)  and  Sensor  Observation  Service  (SOS)[13].  The  O&M  and  SensorML 
contain  standard  model  and  XML  schema  for  observations/measurements  and 
sensors/processes  respectively.  The  SOS  is  a  standard  service  model,  which  provides 
mechanism for querying observation and sensor metadata. 
•  Semantic Sensor Network (SSN) ontology 
The SSN ontology, developed by W3C provides a standard for modeling sensor devices, 
sensor  platforms,  knowledge  of  the  environment  and  observations[14]  [15].  The  SSN 
provides  a  foundation  in  the  direction  of  achieving  interoperability  between  the 
interconnected IoT Silos. 
•  Semantic Sensor Observation Service (SemSOS) 
The Semantic Web enabled implementation of SOS, SemSOS, provides a rich semantic 
backend  (knowledge  base)  while  retaining  the  standard  SOS  specifications/service 
interactions.  A  semantically  intelligent  client  can  utilize  this  capability  of  SemSOS  to 
derive higher  level  abstractions from the  annotated  sensor data [16]  by  implementing a 
semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the  principal 
component of Semantic Sensor Web [17].  
Although  the  utilization  of  these  standards  provide  integration  of  Semantic  Web  with
sensor 
applications, the interoperability challenges on IoT is far from being solved and a semantic IoT 
architecture  is  required  to  provide  interoperability  between  connected  IoT  systems.  This 
architecture should support multiple IoT protocols and severe resource and energy constrains.  
In standard IoT applications the sink nodes are energy-constrained devices and utilizes minimum
resources to conserve the energy. Various proposals seek to optimize the resources and provide 
translation between application layer protocol via the gateway devices[9][6]. These approaches 
fail  in  achieving  interoperability  at  defining  sensor  annotation  model,  which  is  required  to
provide service level interoperability between IoT systems.
IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking
technologies. 
Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects  are  resource-
constrained devices, and require competent communication protocol for energy efficiency. 
First wave of IoT application in smart city domain emphasized on connecting sensor interfacing 
with physical-world using lightweight protocols such as CoAP and XMPP [5][6]. In later stages, 
traditional Internet state transfer protocol such  as REST is used for  similar applications, where 
event-centric frameworks had been implemented to reduce number of messages transmitted [7]. 
The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing first wave of 
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IoT  devices  [8].  Although  these  devices  do  not  utilize  semantic  technologies,  they
provide 
higher-level of awareness from the sensor than just plain raw sensor data.  
The  IoT  domain  has  been  started  getting  congested  with  heterogeneous  applications  using 
different communication protocols and data models [9]. Various organizations such as Open IoT 
alliance, AllSeen alliance, and IPSO alliance are working on standardization of communication 
protocols   to   provide   interoperability   between   various   vendors   silos   [10][11][12].
Organization 
such as  Internet  Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying
to 
scale  their  messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other
protocols. 
These efforts are scattered and largely focus on solving problems around one protocol instead of 
providing integration solution. 
In  Web-centric  infrastructure,  acquisition  of  contextual  information  from  raw  sensor  data 
requires annotation of sensor data with semantic metadata. Key standardization efforts that have 
sought to establish sensor data models for sensors to be accessible and controllable via the Web 
include: 
•  OGC Sensor Web Enablement (SWE) 
The  SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following 
important specifications: Observation & Measurement (O&M), Sensor Model Language 
(SensorML)  and  Sensor  Observation  Service  (SOS)[13].  The  O&M  and  SensorML 
contain  standard  model  and  XML  schema  for  observations/measurements  and 
sensors/processes  respectively.  The  SOS  is  a  standard  service  model,  which  provides 
mechanism for querying observation and sensor metadata. 
•  Semantic Sensor Network (SSN) ontology 
The SSN ontology, developed by W3C provides a standard for modeling sensor devices, 
sensor  platforms,  knowledge  of  the  environment  and  observations[14]  [15].  The  SSN 
provides  a  foundation  in  the  direction  of  achieving  interoperability  between  the 
interconnected IoT Silos. 
•  Semantic Sensor Observation Service (SemSOS) 
The Semantic Web enabled implementation of SOS, SemSOS, provides a rich semantic 
backend  (knowledge  base)  while  retaining  the  standard  SOS  specifications/service 
interactions.  A  semantically  intelligent  client  can  utilize  this  capability  of  SemSOS  to 
derive higher  level  abstractions from the  annotated  sensor data [16]  by  implementing a 
semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the  principal 
component of Semantic Sensor Web [17].  
Although  the  utilization  of  these  standards  provide  integration  of  Semantic  Web  with
sensor 
applications, the interoperability challenges on IoT is far from being solved and a semantic IoT 
architecture  is  required  to  provide  interoperability  between  connected  IoT  systems.  This 
architecture should support multiple IoT protocols and severe resource and energy constrains.  
In standard IoT applications the sink nodes are energy-constrained devices and utilizes minimum
resources to conserve the energy. Various proposals seek to optimize the resources and provide 
translation between application layer protocol via the gateway devices[9][6]. These approaches 
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fail  in  achieving  interoperability  at  defining  sensor  annotation  model,  which  is  required  to
provide service level interoperability between IoT systems.
IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking
technologies. 
Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects  are  resource-
constrained devices, and require competent communication protocol for energy efficiency. 
First wave of IoT application in smart city domain emphasized on connecting sensor interfacing 
with physical-world using lightweight protocols such as CoAP and XMPP [5][6]. In later stages, 
traditional Internet state transfer protocol such  as REST is used for  similar applications, where 
event-centric frameworks had been implemented to reduce number of messages transmitted [7]. 
The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing first wave of 
IoT  devices  [8].  Although  these  devices  do  not  utilize  semantic  technologies,  they
provide 
higher-level of awareness from the sensor than just plain raw sensor data.  
The  IoT  domain  has  been  started  getting  congested  with  heterogeneous  applications  using 
different communication protocols and data models [9]. Various organizations such as Open IoT 
alliance, AllSeen alliance, and IPSO alliance are working on standardization of communication 
protocols   to   provide   interoperability   between   various   vendors   silos   [10][11][12].
Organization 
such as  Internet  Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying
to 
scale  their  messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other
protocols. 
These efforts are scattered and largely focus on solving problems around one protocol instead of 
providing integration solution. 
In  Web-centric  infrastructure,  acquisition  of  contextual  information  from  raw  sensor  data 
requires annotation of sensor data with semantic metadata. Key standardization efforts that have 
sought to establish sensor data models for sensors to be accessible and controllable via the Web 
include: 
•  OGC Sensor Web Enablement (SWE) 
The  SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following 
important specifications: Observation & Measurement (O&M), Sensor Model Language 
(SensorML)  and  Sensor  Observation  Service  (SOS)[13].  The  O&M  and  SensorML 
contain  standard  model  and  XML  schema  for  observations/measurements  and 
sensors/processes  respectively.  The  SOS  is  a  standard  service  model,  which  provides 
mechanism for querying observation and sensor metadata. 
•  Semantic Sensor Network (SSN) ontology 
The SSN ontology, developed by W3C provides a standard for modeling sensor devices, 
sensor  platforms,  knowledge  of  the  environment  and  observations[14]  [15].  The  SSN 
provides  a  foundation  in  the  direction  of  achieving  interoperability  between  the 
interconnected IoT Silos. 
•  Semantic Sensor Observation Service (SemSOS) 
The Semantic Web enabled implementation of SOS, SemSOS, provides a rich semantic 
backend  (knowledge  base)  while  retaining  the  standard  SOS  specifications/service 
interactions.  A  semantically  intelligent  client  can  utilize  this  capability  of  SemSOS  to 
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derive higher  level  abstractions from the  annotated  sensor data [16]  by  implementing a 
semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the  principal 
component of Semantic Sensor Web [17].  
Although  the  utilization  of  these  standards  provide  integration  of  Semantic  Web  with
sensor 
applications, the interoperability challenges on IoT is far from being solved and a semantic IoT 
architecture  is  required  to  provide  interoperability  between  connected  IoT  systems.  This 
architecture should support multiple IoT protocols and severe resource and energy constrains.  
In standard IoT applications the sink nodes are energy-constrained devices and utilizes minimum
resources to conserve the energy. Various proposals seek to optimize the resources and provide 
translation between application layer protocol via the gateway devices[9][6]. These approaches 
fail  in  achieving  interoperability  at  defining  sensor  annotation  model,  which  is  required  to
provide service level interoperability between IoT systems.
IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking
technologies. 
Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects  are  resource-
constrained devices, and require competent communication protocol for energy efficiency. 
First wave of IoT application in smart city domain emphasized on connecting sensor interfacing 
with physical-world using lightweight protocols such as CoAP and XMPP [5][6]. In later stages, 
traditional Internet state transfer protocol such  as REST is used for  similar applications, where 
event-centric frameworks had been implemented to reduce number of messages transmitted [7]. 
The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing first wave of 
IoT  devices  [8].  Although  these  devices  do  not  utilize  semantic  technologies,  they
provide 
higher-level of awareness from the sensor than just plain raw sensor data.  
The  IoT  domain  has  been  started  getting  congested  with  heterogeneous  applications  using 
different communication protocols and data models [9]. Various organizations such as Open IoT 
alliance, AllSeen alliance, and IPSO alliance are working on standardization of communication 
protocols   to   provide   interoperability   between   various   vendors   silos   [10][11][12].
Organization 
such as  Internet  Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying
to 
scale  their  messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other
protocols. 
These efforts are scattered and largely focus on solving problems around one protocol instead of 
providing integration solution. 
In  Web-centric  infrastructure,  acquisition  of  contextual  information  from  raw  sensor  data 
requires annotation of sensor data with semantic metadata. Key standardization efforts that have 
sought to establish sensor data models for sensors to be accessible and controllable via the Web 
include: 
•  OGC Sensor Web Enablement (SWE) 
The  SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following 
important specifications: Observation & Measurement (O&M), Sensor Model Language 
(SensorML)  and  Sensor  Observation  Service  (SOS)[13].  The  O&M  and  SensorML 
contain  standard  model  and  XML  schema  for  observations/measurements  and 
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sensors/processes  respectively.  The  SOS  is  a  standard  service  model,  which  provides 
mechanism for querying observation and sensor metadata. 
•  Semantic Sensor Network (SSN) ontology 
The SSN ontology, developed by W3C provides a standard for modeling sensor devices, 
sensor  platforms,  knowledge  of  the  environment  and  observations[14]  [15].  The  SSN 
provides  a  foundation  in  the  direction  of  achieving  interoperability  between  the 
interconnected IoT Silos. 
•  Semantic Sensor Observation Service (SemSOS) 
The Semantic Web enabled implementation of SOS, SemSOS, provides a rich semantic 
backend  (knowledge  base)  while  retaining  the  standard  SOS  specifications/service 
interactions.  A  semantically  intelligent  client  can  utilize  this  capability  of  SemSOS  to 
derive higher  level  abstractions from the  annotated  sensor data [16]  by  implementing a 
semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the  principal 
component of Semantic Sensor Web [17].  
Although  the  utilization  of  these  standards  provide  integration  of  Semantic  Web  with
sensor 
applications, the interoperability challenges on IoT is far from being solved and a semantic IoT 
architecture  is  required  to  provide  interoperability  between  connected  IoT  systems.  This 
architecture should support multiple IoT protocols and severe resource and energy constrains.  
In standard IoT applications the sink nodes are energy-constrained devices and utilizes minimum
resources to conserve the energy. Various proposals seek to optimize the resources and provide 
translation between application layer protocol via the gateway devices[9][6]. These approaches 
fail  in  achieving  interoperability  at  defining  sensor  annotation  model,  which  is  required  to
provide service level interoperability between IoT systems.
IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking
technologies. 
Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects  are  resource-
constrained devices, and require competent communication protocol for energy efficiency. 
First wave of IoT application in smart city domain emphasized on connecting sensor interfacing 
with physical-world using lightweight protocols such as CoAP and XMPP [5][6]. In later stages, 
traditional Internet state transfer protocol such  as REST is used for  similar applications, where 
event-centric frameworks had been implemented to reduce number of messages transmitted [7]. 
The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing first wave of 
IoT  devices  [8].  Although  these  devices  do  not  utilize  semantic  technologies,  they
provide 
higher-level of awareness from the sensor than just plain raw sensor data.  
The  IoT  domain  has  been  started  getting  congested  with  heterogeneous  applications  using 
different communication protocols and data models [9]. Various organizations such as Open IoT 
alliance, AllSeen alliance, and IPSO alliance are working on standardization of communication 
protocols   to   provide   interoperability   between   various   vendors   silos   [10][11][12].
Organization 
such as  Internet  Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying
to 
scale  their  messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other
protocols. 
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These efforts are scattered and largely focus on solving problems around one protocol instead of 
providing integration solution. 
In  Web-centric  infrastructure,  acquisition  of  contextual  information  from  raw  sensor  data 
requires annotation of sensor data with semantic metadata. Key standardization efforts that have 
sought to establish sensor data models for sensors to be accessible and controllable via the Web 
include: 
•  OGC Sensor Web Enablement (SWE) 
The  SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following 
important specifications: Observation & Measurement (O&M), Sensor Model Language 
(SensorML)  and  Sensor  Observation  Service  (SOS)[13].  The  O&M  and  SensorML 
contain  standard  model  and  XML  schema  for  observations/measurements  and 
sensors/processes  respectively.  The  SOS  is  a  standard  service  model,  which  provides 
mechanism for querying observation and sensor metadata. 
•  Semantic Sensor Network (SSN) ontology 
The SSN ontology, developed by W3C provides a standard for modeling sensor devices, 
sensor  platforms,  knowledge  of  the  environment  and  observations[14]  [15].  The  SSN 
provides  a  foundation  in  the  direction  of  achieving  interoperability  between  the 
interconnected IoT Silos. 
•  Semantic Sensor Observation Service (SemSOS) 
The Semantic Web enabled implementation of SOS, SemSOS, provides a rich semantic 
backend  (knowledge  base)  while  retaining  the  standard  SOS  specifications/service 
interactions.  A  semantically  intelligent  client  can  utilize  this  capability  of  SemSOS  to 
derive higher  level  abstractions from the  annotated  sensor data [16]  by  implementing a 
semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the  principal 
component of Semantic Sensor Web [17].  
Although  the  utilization  of  these  standards  provide  integration  of  Semantic  Web  with
sensor 
applications, the interoperability challenges on IoT is far from being solved and a semantic IoT 
architecture  is  required  to  provide  interoperability  between  connected  IoT  systems.  This 
architecture should support multiple IoT protocols and severe resource and energy constrains.  
In standard IoT applications the sink nodes are energy-constrained devices and utilizes minimum
resources to conserve the energy. Various proposals seek to optimize the resources and provide 
translation between application layer protocol via the gateway devices[9][6]. These approaches 
fail  in  achieving  interoperability  at  defining  sensor  annotation  model,  which  is  required  to
provide service level interoperability between IoT systems.

IoT   interconnects   physical   world   “Things”   by   utilizing   software   and   networking

technologies. Due  to  its  roots  in  traditional  sensor  networks,  connected  physical  objects

are  resource-constrained devices,  and require competent communication protocol for energy

efficiency. First wave of IoT application in smart city domain emphasized on connecting sensor

interfacing with physical-world using lightweight protocols such as CoAP and XMPP .In later

stages, traditional Internet state transfer protocol such  as REST is used for  similar applications,

where  event-centric  frameworks  had  been  implemented  to  reduce  number  of  messages

transmitted . The ‘Smart-Object’ devices with domain specific intelligence are rapidly replacing
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first wave of IoT devices.  Although these devices do not utilize semantic technologies, they

provide higher-level of awareness from the sensor than just plain raw sensor data.  The  IoT

domain  has  been  started  getting  congested  with  heterogeneous  applications  using different

communication protocols and data models . Various organizations such as Open IoT alliance, All

Seen alliance, and IPSO alliance are working on standardization of communication protocols  to

provide   interoperability   between   various   vendors   silos  .Organization  such  as   Internet

Engineering  Task  Force  (IETF) and XMPP  standards  foundation  are  trying  to scale  their

messaging  protocols,  CoAP  and  XMPP,  respectively,  to  align  with  other  protocols. These

efforts  are  scattered  and  largely  focus  on  solving  problems  around  one  protocol  instead  of

providing  integration  solution.  In   Web-centric   infrastructure,   acquisition   of   contextual

information  from  raw  sensor  data requires annotation of sensor data with semantic metadata.

Key standardization efforts that have sought to establish sensor data models for sensors to be

accessible and controllable via the Web include: •  OGC Sensor Web Enablement (SWE) The

SWE  efforts  established  by  the  Open  Geospatial  Consortium  include  following important

specifications: Observation & Measurement (O&M), Sensor Model Language (SensorML)  and

Sensor  Observation  Service  (SOS). The  O&M  and  SensorML contain  standard  model  and

XML  schema  for  observations/measurements  and sensors/processes  respectively.  The  SOS

is  a  standard  service  model,  which  provides mechanism for querying observation and sensor

metadata. 

                                   Semantic Sensor Network (SSN) ontology The SSN ontology, developed

by W3C provides a standard for modeling sensor devices, sensor  platforms,  knowledge  of  the

environment  and  observations.   The  SSN provides  a  foundation  in  the  direction  of

achieving   interoperability   between   the  interconnected  IoT  Silos.  •   Semantic  Sensor

Observation Service (SemSOS) The Semantic Web enabled implementation of SOS, SemSOS,

provides a rich semantic backend  (knowledge  base)  while  retaining  the  standard  SOS

specifications/service  interactions.   A   semantically   intelligent   client   can   utilize   this

capability  of  SemSOS  to derive higher  level  abstractions from the  annotated  sensor data by

implementing a semantic  reasoning  service  acting  on  the  knowledge  base.  SemSOS  is  the

principal component of Semantic Sensor Web. Although  the  utilization  of  these  standards

provide  integration  of  Semantic  Web  with  sensor applications, the interoperability challenges

on IoT is  far  from being solved and a semantic  IoT architecture  is   required  to   provide

interoperability  between  connected  IoT  systems.  This architecture should support multiple

IoT protocols and severe resource and energy constrains.  In standard IoT applications the sink

nodes are energy-constrained devices and utilize minimum resources to conserve the energy.

Various proposals seek to optimize the resources and provide translation between application

layer protocol via the gateway devices. These approaches fail  in  achieving  interoperability  at

defining  sensor  annotation  model,  which  is  required  to provide service level interoperability

between IoT systems.
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Experiment-8

Aim:  Experiment  on  application  framework  and  embedded  software  agents  for  IoT

Toolkit.

The IoT Toolkit is a collection of libraries that support you in effortless communication with
modern IoT devices while concentrating on the important parts of your application.

While  IoT  devices  typically  speak  simple  languages  it  can  become  a  burden  to  actually
implement these languages conform to their standards. The IoT toolkit provides proven libraries
that help you surpass the difficulties when starting to access modern web based services. The
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collection of libraries provides an easy to use API split into multiple theme based parts that can
be used independent from each other and can be combined anytime necessary.

Using the IoT Toolkit jumpstarts the implementation of simple tasks like retrieving web pages
using the HTTP client up to more complex tasks like communicating with REST based APIs by
using the HTTP client together with the JSON parser. Popular services like Dropbox that provide
their REST API to developers can be interfaced using this toolkit. Depending on the provided
service additional components like a TLS stack such as emSSL might be necessary.

The  libraries  are  optimized  for  use  in  embedded  systems  but  are  not  limited  to.  PC based
applications like emDropbox are possible too.

Key features

 Easy to use API to get started with IoT applications
 Supports REST API

 Supports handling plain received data

 Supports handling data encoding like JSON

 Small embedded optimized API

 Small module based libraries for a small footprint

 Memory efficient and resource effective handling of data

EXPE  R  IME  N  T   N  O. 9  

Aim: Exercise on working principle of Rasberry Pi. Application layer protocols:

https://www.segger.com/iot-solutions/core/emdropbox/
https://www.segger.com/products/security-iot/emssl/
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The Raspberry Pi is a Broadcom BCM2835 SOC (system on chip board). It comes equipped with
a 700 MHz, 512 MB of SDRAM and ARM1176JZF-S core CPU. The USB 2.0 port of the
raspberry pi boars uses only external data connectivity options. The Ethernet in the raspberry pi
is the main gateway to interconnect with other devices and the internet in model B. This draws
its  power  from a  micro  USB adapter,  with  a  minimum range of  2.5  watts  (500 MA).  The
graphics, specialized chip is designed to speed up the manipulation of image calculations. This is
in built with Broadcom video core IV cable that is useful if you want to run a game and video
through your raspberry pi.

Model B Raspberry pi Board

Features of Raspberry PI Model B

 512 MB SDRAM memory
 Broadcom BCM2835 SoC full high definition  multimedia processor

 Dual Core Video Core IV Multimedia coprocessor

 Single 2.0 USB connector

 HDMI (rev 1.3 and 1.4) Composite RCA (PAL & NTSC) Video Out

 3.5 MM Jack, HDMI Audio Out

 MMC, SD, SDIO Card slot on board storage

 Linux Operating system

 Dimensions are 8.6cm*5.4cm*1.7cm
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 On board 10/100 Ethernet RJ45 jack

To Set Up & Start your Raspberry Pi

The Raspberry Pi board comes equipped with an SD card. This slot permits us to insert an SD
card and that can use it as our devices. The SD card is a main storage device for raspberry pi
board like a hard disk of a personal computer. The bootable Linux operating system is loaded
onto the card, you are planning to use. The raspberry pi supports Linux, Qtonpi, ARM, Mac
operating systems. You can select one OS; you will need to write it to an SD card using a Disk
manager application. You can also use other storage mechanism, like USB external hard drive or
USB drive. There are a numerous brands of SD cards are available in the market in different
sizes. The raspberry pi supports max 64 GB SD card.

Before you start your raspberry pi, you are going to need to connect a display, keyboard, mouse
like as a PC. It supports three different O/Ps like HDMI video, composite video, and DSI video,
where the DSI video needs some specific hardware. When you buy a raspberry pi board it may
sold with  or  without  an  SD card.  It  is  a  very important  specification in  raspberry  pi  board.
Because, it keeps its operating system, documents and programs. If your raspberry pi did not
come  with  an  SD  card,  then  the  min  size  you  should  get  is  4GB.
Advantages of the raspberry pi are, it is small in size, and it works as a normal computer at low
cost server to handle web traffic.

Applications of Raspberry Pi

The raspberry pi boards are used in many applications like Media streamer, Arcade machine,
Tablet  computer,  Home  automation,  Carputer,  Internet  radio,  Controlling  robots,  Cosmic
Computer, Hunting for meteorites, Coffee and also in raspberry pi based projects.

Raspberry Pi based Motor Speed Control

The main intention of this project is to control the speed of a DC Motor  using Raspberry Pi.

Hardware and software Requirements

DC  Motor,  Raspberry  pi  model,  TV  or  PC  monitor,  Motor  Driver  IC,  LED,  Resistors,
Capacitors, Diode, Transformer, Voltage Regulator and PHP program/wiring pi
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Raspberry Pi based Motor Speed Control Block Diagram

This project uses a Raspberry Pi board to control the DC motor speed. The speed of a DC motor
is directly proportional to the voltage applied across its terminals, when the voltage across the
motor terminal is varied, then the speed also gets varied accordingly. So this is the main principle
of this project. A keyboard is connected to the Raspberry pi board to run the motor at different
speeds by pressing the key.
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EXPE  R  IME  N  T   N  O. 10  

Aim: Experiment on connectivity of Rasberry Pi with existing system components.

We designed LabNet as a distributed system (network) where LabNet presents a node

running  on  a  RasPi.  We  had  two  important  requirements  for  this  system:  openness  and

scalability. Openness means that each node can control an experimental chamber on its own or

together with a number of other nodes .Scalability means that there can be any number of nodes

and  thus  experimental  chambers  in  the  system.  However,  a  node  or  a  chamber  has  to  be

removable from the system without adjustments on the other nodes. To ensure this, each node in

our system is controlled by a RasPi, each RasPi is configured in the same way and controlled by

the same software. However, this also comes with the restriction that at most one experimental

system can be connected to each RasPi to be removable without electrical adjustments. But this

also means a simplification: LabNet only needs to accept a single connection and does not need

resource management for multiple connections, because only one experiment runs on one system

and the hardware is not shared.

Thus, the network of LabNet nodes represents the distributed system and offers, as servers, the
hardware resources in the network. However, hardware control in the context of the experiments
is the responsibility of clients and not a LabNet duty. For example, LabNet does not decide about
an output pin state, but LabNet knows how to switch the state and performs it at the client’s
request. One client could take the control over of the entire LabNet distributed system or divide
the nodes among several clients. 

                  It all depends on the situation and requirements: a large number of identical
experimental chambers with identical experimental tasks are usually controlled by one client
while different experimental tasks may better be controlled by separate clients, also to start and
stop experiments independently. For communication between LabNet and client a flexible and
fast message protocol using Protobuf was developed (section Message protocol). The clients can
be implemented in any language with Protobuf support, for example, Python, C#, C++, etc.

Since the Raspberry Pi is a single-board computer, it runs ‘Raspberry Pi OS’: a Debian-based
Linux distribution.  This allows a large freedom in the choice of programming language and
software  tools.  Both  interpreted  languages,  such  as  Python,  and  compiled  languages  are
available. LabNet was required to meet two criteria:

1. Time-critical: all operations should be performed as quickly as possible.
2. Flexible: new functionality extensions should be as simple as possible.
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Unfortunately, all interpreted programming languages have a disadvantage in execution speed
compared to compiled languages. Nevertheless, many of the tools developed recently, such as
Autopilot and pyControl, use Python. Python is a simple language and provides many packages
for all purposes. However, because execution speed was of primary importance we decided to
use C++.

Extensions with new functionalities are generally possible in two ways: (i) software adaption
with  recompilation  in  case  of  compiled  languages  and  (ii)  a  plug-in  system.  In  the  current
LabNet version, we use recompilation but our road map also includes a future plug-in system. To
simply  modifications  the  software  must  have  a  suitable  architecture  and  a  high  degree  of
modularization.

Since its version 2 the Raspberry Pi has 4 cores. In addition, most of its hardware controllers,

such as USB or Ethernet, operate asynchronously, thus they do not require CPU capacity because

of DMA (Direct Memory Access), and they report their work completion via interrupt messages.

LabNet  needed  an  architecture  that  optimally  leverages  this  already  available  hardware

asynchrony for parallel execution. Handling GPIO lines is fast, but accessing a UART may lead

to considerable delays in sequentially executed software. This presupposes the use of multiple

threads.  Since  programming  with  many  parallel  threads  is  a  very  error-prone  and  time-

consuming task, we decided to develop an actor-based software (see sections Actor model and

SObjectizer). This also provides higher flexibility and software modularity.

Example

The following example and the corresponding listings (1–3) show how a client can initialize and

control the hardware together with a LabNet server on a RasPi with a simple hardware setup.

The client could run on a PC and use any language that has support for Protobuf-like Python, C+

+, C#, etc. Since we use C# in our experiments, the C# notation is also used in the listings.

Basically, it shows the use of some of the LabNet messages, but the communication via TCP/IP

is  omitted  for  simplicity.  We  simply  assume  that  a  TCP/IP  client  exists  and  handles  all

operations like send, receive, and serialization.

Let us assume an experimental setup with an LED and audio as stimuli, a valve to release a
liquid reward and a photo gate as a nose-poke sensor to detect  animal behaviour.  All  these
components can be connected directly to the GPIO pins via a simple circuit. The headphone jack
can be used for audio output. Then, we need to send five commands to LabNet to initialize all
components; see Listing 1. It would usually be necessary for the client to wait for the responses
from LabNet and check the initialization results. Here, we skip this step.



 LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-801

Internet Of Things
During experiments, animals must usually perform some operant behavior. This can be as simple
as nose poking to trigger a photo gate after a certain stimulus has been perceived. In Listing 2,
LabNet activates an LED and produces a sine tone. In the case of the tone, it is instructed to
automatically generate a pulsed output. On detecting On and Off state changes, LabNet transmits
such photo gate state changes to the client. In response to the photo gate state change, a reward
can be provided. In Listing 3, a liquid reward valve is opened for 100 ms.

A typical experiment in combination with LabNet comprises several phases:

 establishing a TCP/IP connection;
 initializing all hardware components;

 turning stimuli on or off in a specific order;

 waiting for an animal reaction and potentially providing a reward.

Performance evaluation

Because the neurons in the brain work in the millisecond range, the response times in behavioral

experiments are critical and should match that range.

// start GPIO interface with WiringPi 
var initIo = new GpioWiringPiInit(); 
// init a digital output on pin 5 
var led = new GpioWiringPiInitDigitalOut {
   Pin = 5, 
  IsInverted = false
}; 
// init a digital output on pin 26 
var valve = new GpioWiringPiInitDigitalOut {
   Pin = 26,
   IsInverted = false
}; 
// init a digital input on pin 23 
var poke = new GpioWiringPiInitDigitalIn {
   Pin = 23,
   IsInverted = false,
   ResistorState = PullUp
};

// start sound interface 
var initSound = new InitSound();
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// create a sine tone
var sine = new DefineSineTone {
   Id = 1,
   Frequenz = 1000,
   Volume = 0.5
};
Listing 1 

Each generated object represents an initialization message to be serialized with Protobuf and

transmitted to LabNet. The first message initializes the digital I/O interface with WiringPi pin

notation. The next three initialize an LED, a valve, and a poke sensor on the WiringPi interface.

The fifth creates the sound generator on the headphone jack. The last, initializes a sine tone with

1 kH frequency and 50% volume. Object initialization in C# notation. Serialization and TCP/IP

communication not listed.

// change the state of the pin 5 to true
var setLed = new DigitalOutSet {
   Id = new PinId { Interface = GpioWiringpi, Pin = 5 },
   State = true
}; 
// turn the sine tone in pulses of 500ms on and off
var pulseSound = new DigitalOutPulse {
   Id = new PinId { Interface = Sound, Pin = 1 },
   HighDuration = 500, // ms
   LowDuration = 500, // ms
   Pulses =10
};
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