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Vision of the Department

To be recognized for keeping innovation, research and excellence abreast of learning in the field of

computer science & engineering to cater the global society.

Mission of the Department

M1:  To provide  an  exceptional  learning  environment  with  academic  excellence  in  the  field  of
computer science and engineering.

M2:  To facilitate the students for research and innovation in the field of software, hardware and
computer applications and nurturing to cater the global society.

M3:  To establish professional relationships with industrial and research organisations to enable the
students to be updated of the recent technological advancements. 

M4:   To groom the learners for being the software professionals catering the needs of modern society
with ethics, moral values and full of patriotism.  

Program Educational Objectives (PEO’s)

PEO1:  The graduate will have the knowledge and skills of major domains of computer science and
engineering in providing solution to real world problems most efficiently.

PEO2:  The graduate will be able to create and use the modern tools and procedures followed in the
software industry in the relevant domain.

PEO3: The graduate will be following the ethical practices of the software industry and contributing to
the society as a responsible citizen. 

PEO4: The graduate will have the innovative mindset of learning and implementing the latest

             developments and research outcomes in the computer hardware and software to keep pace

             with the fast changing socio economic world.
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LAB OUTCOMES

Student will be able to

CO1: Design new algorithms. Prove them correct, and analyze their asymptotic and
           Absolute  runtime and memory demand.

CO2:. Find an algorithm to solve the problem(create) and prove that the algorithm solve the problem correctly.

CO3: Apply backtracking techniques for solving eight-queen problem.

CO4: Implement branch and bound methods to solve travelling salesman problem.

CO5: Solve knapsack problem using dynamic programming algorithm.

LIST OF EXPERIMENTS

1. Write a program for Iterative and Recursive Binary Search.

2. Write a program for Merge Sort.

3. Write a program for Quick Sort.

4. Write a program for Strassen’s Matrix Multiplication

5. Write a program for optimal merge patterns.

6. Write a program for Huffman coding. 

7. Write a program for minimum spanning trees using Kruskal’s algorithm.

8. Write a program for minimum spanning trees using Prim’s algorithm.

9. Write a program for single sources shortest path algorithm

10. Write a program for traveling salesman problem.



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL
CS-402

ANALYSIS & DESIGN OF ALGORITHM

Experiment No. 1

THEORY:

Binary Search

Solve a problem, either directly because solving that instance is easy (typically, because the instance is
small)  or  by  dividing  it  into  two  or  more  smaller  instances.  Each  of  these  smaller  instances  is
recursively solved, and the solutions are combined to produce a solution for the original instance. The
binary search algorithm begins by comparing the target value to the value of the middle element of the
sorted array. If the target value is equal to the middle element’s value, then the position is returned and
the search is  finished. If  the target value is  less than the middle element’s value,  then the search
continues on the lower half of the array; or if the target value is greater than the middle element’s
value, then the search continues on the upper half of the array. This process continues, eliminating half
of the elements, and comparing the target value to the value of the middle element of the remaining
elements - until the target value is either found (and its associated element position is returned), or
until the entire array has been searched (and “not found” is returned).

Characteristic

Every iteration eliminates half of the remaining possibilities. This makes binary searches very efficient
- even for large collections. Our implementation relies on recursion, though it is equally as common to
see an iterative approach. Binary search requires a sorted collection. This means the collection must
either be sorted before searching, or inserts/updates must be smart. Also, binary searching can only be
applied to a collection that allows random access (indexing).

In Real World

Binary searching is frequently used to its performance characteristics over large collections. The only
time binary searching doesn’t make sense is when the collection is being frequently updated, since
resorting
will be required.

Recursive Binary Search Algorithm

A straightforward implementation of binary search is recursive. The initial call uses the indices of the
entire array to be searched. The procedure then calculates an index midway between the two indices,
determines which of the two sub arrays to search, and then does a recursive call to search that sub
array. Each of the calls is tail recursive, so a compiler need not make a new stack frame for each call.
The variables min and max are the lowest and highest inclusive indices that are searched.

int binary_search(int A[], int key, int min, int max)

{ // test if array is empty
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if (max < min)
// set is empty, so return value showing not found
return KEY_NOT_FOUND;
else
{ // calculate midpoint to cut set in half
int mid = midpoint(min, max);
// three-way comparison
if (A[mid] > key)
// key is in lower subset
return binary_search(A, key, min, mid - 1);
else if (A[mid] < key)
// key is in upper subset
return binary_search(A, key, mid + 1, max);
else
// key has been found
return mid;
} }
It is invoked with initial min and max values of 0 and n-1 for a zero based array of length n.
Iterative Binary Search Algorithm

The binary search algorithm can also be expressed iteratively with two index limits that progressively
narrow the search range.
int binary_search(int A[], int key, int min, int max)
{
// continue searching while [min,max] is not empty
while (min <= max)
{
// calculate the midpoint for roughly equal partition
int mid = midpoint(min, max);
if (A[mid] == key)
// key found at index mid
return mid;
// determine which subarray to search
else if (A[mid] < key)
// change min index to search upper subarray
min = mid + 1;

else
// change max index to search lower subarray
max = mid - 1;
}
// key was not found
return KEY_NOT_FOUND;}
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Experiment No. 2

THEORY

Merge Sort:A merge sort is an efficient, general-purpose, comparison-based sorting algorithm. Most

implementations produce a stable sort, which means that the implementation preserves the input order

of equal elements in the sorted output. Merge sort is a divide and conquer algorithm.

Merge sort works as follows:

1. Divide the unsorted list into two sub lists of about half the size

2. Sort each of the two sub lists

3. Merge the two sorted sub lists back into one sorted list.

To sort the entire sequence A[1 .. n], make the initial call to the procedure MERGE-SORT (A, 1, n).

Merge sort is based on the divide-and-conquer paradigm. Since we are dealing with subproblems, we

state each subproblem as sorting a subarray A[p .. r]. Initially, p = 1 and r = n, but these values change

as

we recurse through subproblems.

To sort A[p .. r]:

1. Divide Step
If a given array A has zero or one element, simply return; it is already sorted. Otherwise, split A[p .. r]

into two subarrays A[p .. q] and A[q + 1 .. r], each containing about half of the elements of A[p .. r].

That

is, q is the halfway point of A[p .. r].

2. Conquer Step
Conquer by recursively sorting the two subarrays A[p .. q] and A[q + 1 .. r].

3. Combine Step
Combine the elements back in A[p .. r] by merging the two sorted subarrays A[p .. q] and A[q + 1 .. r]

into a sorted sequence. To accomplish this step, we will define a procedure MERGE (A, p, q, r).
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Algorithm:
MERGE-SORT (A, p, r)

IF p < r // Check for base case

THEN q = FLOOR[(p + r)/2] // Divide step
MERGE (A, p, q) // Conquer step.
MERGE (A, q + 1, r) // Conquer step.
MERGE (A, p, q, r) // Conquer step.

ANALYSIS

The straightforward version of function merge requires at most 2n steps (n steps for copying the 
sequence
to the intermediate array b, and at most n steps for copying it back to array a). The time complexity of
mergesort is therefore
T(n) ≤ 2n + 2 T(n/2) and
T(1) = 0
The solution of this recursion yields
T(n) ≤ 2n log(n) ε O(n log(n))

Worst case
performance

O(n log n)

Best case performance O(n log n) typical,
O(n) natural variant

Average case
performance

O(n log n)

Worst case space
complexity

О(n) total, O(n)
auxiliary

Data structure Array
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Experiment No. 3

THEORY

Quick Sort:  Quicksort  is a well-known sorting algorithm developed by C. A. R. Hoare that, on
average, makes (bigO notation) comparisons to sort  n  items. However, in the worst case, it makes
comparisons. Typically, quicksort is significantly faster in practice than other algorithms, because its
inner loop can be efficiently implemented on most architectures, and in most real-world data it  is
possible to make design choices which minimize the possibility of requiring quadratic time. Quicksort
is  a  comparison sorting  algorithm.Quicksort  sorts  by employing a  divide  and conquer  strategy to
divide a list into two sub-lists.

Pick an element, called a pivot, from the list.

Reorder the list so that all elements which are less than pivot come before the pivot and so that all

elements greater than the pivot come after it (equal values can go either way). After this partitioning, 

the

pivot is in its final position. This is called the partition operation.

Recursively sort the sub-list of lesser elements and the sub-list of greater elements.

Pseudocode For partition(a, left, right, pivotIndex)

pivotValue := a[pivotIndex]

swap(a[pivotIndex], a[right]) // Move pivot to end

storeIndex := left

for i from left to right-1

if a[i] ≤ pivotValue

swap(a[storeIndex], a[i])

storeIndex := storeIndex + 1

swap(a[right], a[storeIndex]) // Move pivot to its final place

return storeIndex

Pseudocode For quicksort(a, left, right)

if right > left

select a pivot value a[pivotIndex]

pivotNewIndex := partition(a, left, right, pivotIndex)

quicksort(a, left, pivotNewIndex-1)
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quicksort(a, pivotNewIndex+1, right)

ANALY SIS
The partition routine examines every item in the array at most once, so complexity is clearly  O(n).
Usually, the partition routine will divide the problem into two roughly equal sized partitions. We know

that we can divide n items in half log2n times.

This makes quicksort a O(nlogn) algorithm - equivalent to heapsort.

Experiment No. 4

THEORY

Strassen’s Matrix Multiplication

The Strassen’s method of matrix multiplication is a typical divide and conquer algorithm. In which 
how
a large matrices used for multiplication with the help of small sizes matrices.
Here A, and B are the given matrices and C is the result matrix C=AxB

We partition A,B,C into equally sized block matrices

For such we divides matrix into smaller size matrix and calculate following 7 equations.
Now comes the important part. we define new matrices

Now using above 7 equations calculate the resultant matrix elements as follows:
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The standard matrix multiplications takes
n3 = nlog2 8
multiplications of the elements in the field F. We ignore the additions needed because, depending on 
F,they can be much faster than the multiplications in computer implementations, especially if the sizes 
of the matrix entries exceed the word size of the machine.
With the Strassen algorithm we can reduce the number of multiplications to
nlog2 7 ≈ n2.807 .
The reduction in the number of multiplications reduced numeric stability.
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Experiment No. 5
THEORY

Merge a set of sorted files of different length into a single sorted file. We need to find an optimal solution,
where the resultant file will be generated in minimum time. If the number of sorted files are given, there are
many ways to merge them into a single sorted file. This merge can be performed pair wise. Hence, this type of
merging is called as 2-way merge patterns. As, different pairings require different amounts of time, in this
strategy we want to determine an optimal way of merging many files together. At each step, two shortest
sequences are merged. To merge a p-record file and a q-record file requires possibly p + q record moves, the
obvious choice being,  merge the two smallest  files  together at  each step.  Two-way merge patterns can be
represented by binary merge trees. Let us consider a set of n sorted files {f1, f2, f3, …,fn}. Initially, each
element of this is considered as a single node binary tree. To find this optimal solution, the following algorithm
is used.

ALGORITHM:
At every stage we merge the files of the least length.
Steps:
Create a min heap of the set of elements.
While(heap has more than one element)
{
Delete a minimum element from the heap, and store it in min1;
Delete a minimum element from the heap, and store it in min2;
Create a node with the fields (info, left_link, right_ink);
Let info.node = min1 + min2;
Let left_link.node = min1;
Let right_link_node = min2;
Insert node with valued info into the heap;
}
struct treenode {
struct treenode *lchild, *rchild;
int weight;
};
typedef struct treenode Type;

Type *Tree(int n)
// list is a global list of n single node
// binary trees as described above.
{
for (int i=1; i<n; i++) {
Type *pt = new Type;
// Get a new tree node.
pt -> lchild = Least(list); // Merge two trees with
pt -> rchild = Least(list); // smallest lengths.
pt -> weight = (pt->lchild)->weight
+ (pt->rchild)->weight;
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Insert(list, *pt);
}
return (Least(list)); // Tree left in l is the merge tree.
}

PROGRAM
#include<iostream.h>
#include<conio.h>
void main()
{
clrscr();
int i,k,a[10],c[10],n,l;
cout<<"Enter the no. of elements\t";
cin>>n;
cout<<"\nEnter the sorted elments for optimal merge pattern";
for(i=0;i<n;i++)
{
cout<<"\t";
cin>>a[i];
}
i=0;k=0;
c[k]=a[i]+a[i+1];
i=2;
while(i<n)
{
k++;
if((c[k-1]+a[i])<=(a[i]+a[i+1]))
{
c[k]=c[k-1]+a[i];
}
else
{
c[k]=a[i]+a[i+1];
i=i+2;
while(i<n)
{ k++;
if((c[k-1]+a[i])<=(c[k-2]+a[i]))
{
c[k]=c[k-1]+a[i];
}
else
{
c[k]=c[k-2]+a[i];
}i++;
}
}i++;
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}
k++;
c[k]=c[k-1]+c[k-2];
cout<<"\n\nThe optimal sum are as follows......\n\n";
for(k=0;k<n-1;k++)
{
cout<<c[k]<<"\t";
}
l=0;
for(k=0;k<n-1;k++)
{
l=l+c[k];
}
cout<<"\n\n The external path length is ......"<<l;
getch();
}
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Experiment No. 6
THEORY:

Huffman coding is lossless data compression algorithm. In this algorithm a variable-length code is
assigned to input different characters. The code length is related with how frequently characters are
used. Most frequent characters have smallest codes, and longer codes for least frequent characters.

There are mainly two parts. First one to create Huffman tree, and another one to traverse the tree to
find codes.

For an example, consider some strings “YYYZXXYYX”, the frequency of character Y is larger than
X and the character Z has least frequency. So the length of code for Y is smaller than X, and code for
X will be smaller than Z.

 Complexity for assigning code for each character according to their frequency is O(n log n)
Input −  A  string  with  different  characters,  say  “ACCEBFFFFAAXXBLKE”Output −  Code  for
different characters:

Data: K, Frequency: 1, Code: 0000

Data: L, Frequency: 1, Code: 0001

Data: E, Frequency: 2, Code: 001

Data: F, Frequency: 4, Code: 01

Data: B, Frequency: 2, Code: 100

Data: C, Frequency: 2, Code: 101

Data: X, Frequency: 2, Code: 110

Data: A, Frequency: 3, Code: 111

ALGORITHM

huffmanCoding(string)
Input − A string with different characters.
Output − The codes for each individual characters.
Begin
   define a node with character, frequency, left and right child of the node for Huffman tree.
   create a list ‘freq’ to store frequency of each character, initially all are 0
   for each character c in the string do
      increase the frequency for character ch in freq list.
   done
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   for all type of character ch do
      if the frequency of ch is non zero then add ch and its frequency as a node of priority queue Q.
   done
   while Q is not empty do
    remove item from Q and assign it to left child of node
    remove item from Q and assign to the right child of node
    traverse the node to find the assigned code
   done
End

traverseNode(n: node, code)
Input − The node n of Huffman tree, and code assigned from previous call 
Output − Code assigned with each character

if left child of node n ≠ φ then
   traverseNode(leftChild(n), code+’0’) //traverse through the left child
   traverseNode(rightChild(n), code+’1’) //traverse through the right child
else
   display the character and data of current node.
PROGRAM:
#include<iostream>

#include<queue>

#include<string>

using namespace std;

struct node{

   int freq;

   char data;

   const node *child0, *child1;

   node(char d, int f = -1){ //assign values in the node

      data = d;

      freq = f;

      child0 = NULL;

      child1 = NULL;
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   }

   node(const node *c0, const node *c1){

      data = 0;

      freq = c0->freq + c1->freq;

      child0=c0;

      child1=c1;

   }

   bool operator<( const node &a ) const { //< operator performs to find priority in queue

      return freq >a.freq;

   }

   void traverse(string code = "")const{

      if(child0!=NULL){

         child0->traverse(code+'0'); //add 0 with the code as left child

         child1->traverse(code+'1'); //add 1 with the code as right child

      }else{

         cout << "Data: " << data<< ", Frequency: "<<freq << ", Code: " << code<<endl;

      }

   }

};

void huffmanCoding(string str){

   priority_queue<node> qu;

   int frequency[256];

   for(int i = 0; i<256; i++)

      frequency[i] = 0; //clear all frequency

   for(int i = 0; i<str.size(); i++){

      frequency[int(str[i])]++; //increase frequency

   }

   for(int i = 0; i<256; i++){

      if(frequency[i]){

         qu.push(node(i, frequency[i]));

      }
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   }

   while(qu.size() >1){

      node *c0 = new node(qu.top()); //get left child and remove from queue

      qu.pop();

      node *c1 = new node(qu.top()); //get right child and remove from queue

      qu.pop();

      qu.push(node(c0, c1)); //add freq of two child and add again in the queue

   }

   cout << "The Huffman Code: "<<endl;

   qu.top().traverse(); //traverse the tree to get code

}

main(){

   string str = "ACCEBFFFFAAXXBLKE"; //arbitray string to get frequency

   huffmanCoding(str);

}

Output

The Huffman Code:

Data: K, Frequency: 1, Code: 0000

Data: L, Frequency: 1, Code: 0001

Data: E, Frequency: 2, Code: 001

Data: F, Frequency: 4, Code: 01

Data: B, Frequency: 2, Code: 100

Data: C, Frequency: 2, Code: 101

Data: X, Frequency: 2, Code: 110

Data: A, Frequency: 3, Code: 111
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Experiment No. 7
THEORY

Spanning tree - A spanning tree is the subgraph of an undirected connected graph.

Minimum Spanning tree - Minimum spanning tree can be defined as the spanning tree in which the
sum of the weights of the edge is minimum. The weight of the spanning tree is the sum of the weights
given to the edges of the spanning tree.

Kruskal's Algorithm is used to find the minimum spanning tree for a connected weighted graph. The
main target of the algorithm is to find the subset of edges by using which we can traverse every vertex
of the graph. It follows the greedy approach that finds an optimum solution at every stage instead of
focusing on a global optimum.

How does Kruskal's algorithm work?

In Kruskal's algorithm, we start from edges with the lowest weight and keep adding the edges until the
goal is reached. The steps to implement Kruskal's algorithm are listed as follows -First, sort all the
edges from low weight to high.

o Now, take the edge with the lowest weight and add it to the spanning tree. If the edge to be
added creates a cycle, then reject the edge.

o Continue to add the edges until we reach all vertices, and a minimum spanning tree is created.

The applications of Kruskal's algorithm are -

o Kruskal's algorithm can be used to layout electrical wiring among cities.
o It can be used to lay down LAN connections.

Example of Kruskal's algorithm

o Now,  let's  see  the  working  of  Kruskal's  algorithm using  an  example.  It  will  be  easier  to
understand Kruskal's algorithm using an example.

o Suppose a weighted graph is -
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The weight of the edges of the above graph is given in the below table -

Edge AB AC AD AE BC CD DE

Weight 1 7 10 5 3 4 2

Now, sort the edges given above in the ascending order of their weights.

Edge AB DE BC CD AE AC AD

Weight 1 2 3 4 5 7 10

Now, let's start constructing the minimum spanning tree.

Step 1 - First, add the edge AB with weight 1 to the MST.
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Step 2 - Add the edge DE with weight 2 to the MST as it is not creating the cycle.

Step 3 - Add the edge BC with weight 3 to the MST, as it is not creating any cycle or loop.

Step 4 - Now, pick the edge CD with weight 4 to the MST, as it is not forming the cycle.

Step 5 - After that, pick the edge AE with weight 5. Including this edge will create the cycle,
so discard it.
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Step 6 - Pick the edge AC with weight 7. Including this edge will create the cycle, so discard
it.

Step 7 - Pick the edge AD with weight 10. Including this edge will also create the cycle, so
discard it.

So,  the  final  minimum spanning tree  obtained  from the  given weighted graph by  using
Kruskal's algorithm is -

The cost of the MST is = AB + DE + BC + CD = 1 + 2 + 3 + 4 = 10.

Now, the number of edges in the above tree equals the number of vertices minus 1. So, the
algorithm stops here.

Algorithm
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Step 1: Create a forest F in such a way that every vertex of the graph is a separate treeStep 2: Create a 

set E that contains all the edges of the graph.  

Step 3: Repeat Steps 4 and 5 while E is NOT EMPTY and F is not spanning  

Step 4: Remove an edge from E with minimum weight  

Step 5: IF the edge obtained in Step 4 connects two different trees, then add it to the forest F   

(for combining two trees into one tree).  
ELSE  
Discard the edge  
Step 6: END  
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Experiment No. 8

THEORY

Prim's Algorithm

It is a greedy algorithm. It starts with an empty spanning tree. The idea is to maintain two sets of
vertices:

o Contain vertices already included in MST.
o Contain vertices not yet included.

At every step, it considers all the edges and picks the minimum weight edge. After picking the edge, it
moves the other endpoint of edge to set containing MST.

Steps for finding MST using Prim's Algorithm:
1. Create MST set that keeps track of vertices already included in MST.
2. Assign key values to all vertices in the input graph. Initialize all key values as INFINITE
(∞). Assign key values like 0 for the first vertex so that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum key value. Include 'u'to MST set.
b. Update  the  key  value  of  all  adjacent  vertices  of  u.  To  update,  iterate  through  all

adjacent vertices. For every adjacent vertex v, if the weight of edge u.v less than the
previous key value of v, update key value as a weight of u.v.

MST-PRIM (G, w, r)
 1. for each u ∈ V [G]
 2. do key [u] ← ∞
 3. π [u] ← NIL
 4. key [r] ← 0
 5. Q ← V [G]
 6. While Q ? ∅
 7. do u ← EXTRACT - MIN (Q)
 8. for each v ∈ Adj [u]
 9. do if v ∈ Q and w (u, v) < key [v]
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 10. then π [v] ← u
 11. key [v] ← w (u, v)

Example: Generate minimum cost spanning tree for the following graph using Prim's .

.

Solution: In Prim's algorithm, first we initialize the priority Queue Q. to contain all the vertices and the
key of each vertex to ∞ except for the root, whose key is set to 0. Suppose 0 vertex is the root, i.e., r.
By EXTRACT - MIN (Q) procure, now u = r and Adj [u] = {5, 1}.

Removing u from set Q and adds it to set V - Q of vertices in the tree. Now, update the key
and π fields of every vertex v adjacent to u but not in a tree.

Taking 0 as starting vertex  
  Root = 0  
    Adj [0] = 5, 1  
  Parent, π [5] = 0 and π [1] = 0  
      Key [5] = ∞ and key [1] = ∞  
  w [0, 5) = 10  and w (0,1) = 28  
   w (u, v) < key [5] , w (u, v) < key [1]  
        Key [5] = 10 and key [1] = 28  
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So update key value of 5 and 1 is:  

Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10 which is minimum so u = 5.

Adj [5] = {0, 4} and 0 is already in heap  
Taking 4, key [4] = ∞      π [4] = 5  
(u, v) < key [v] then key [4] = 25  
w (5,4) = 25  
w (5,4) < key [4]  
date key value and parent of 4.  
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Now remove 4 because key [4] = 25 which is minimum, so u =4

Adj [4] = {6, 3}  
Key [3] = ∞         key [6] = ∞  
w (4,3) = 22        w (4,6) = 24  
w (u, v) < key [v]    w (u, v) < key [v]  
w (4,3) < key [3]      w (4,6) < key [6]  

Update key value of key [3] as 22 and key [6] as 24.

And the parent of 3, 6 as 4.

π[3]= 4       π[6]= 4   

u = EXTRACT_MIN (3, 6)            [key [3] < key [6]]  
u = 3              i.e.  22 < 24  
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Adj [3] = {4, 6, 2}  
  4 is already in heap  
  4 ≠ Q key [6] = 24 now becomes key [6] = 18  
  Key [2] = ∞            key [6] = 24  
  w (3, 2) = 12          w (3, 6) = 18  
  w (3, 2) < key [2]         w (3, 6) < key [6]  

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent of 2 and 6 is 3.

π [2] = 3      π[6]=3  

Now by EXTRACT_MIN (Q) Removes 2, because key [2] = 12 is minimum.

u = EXTRACT_MIN (2, 6)  
u = 2          [key [2] < key [6]]  
        12 < 18  
Now the root is 2   
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Adj [2] = {3, 1}  
   3 is already in a heap  
Taking 1, key [1] = 28  
   w (2,1) = 16  
   w (2,1) < key [1]  

So update key value of key [1] as 16 and its parent as 2.

π[1]= 2

Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16 is minimum.

Adj [1] = {0, 6, 2}  
    0 and 2 are already in heap.  
Taking 6, key [6] = 18  
   w [1, 6] = 14  
   w [1, 6] < key [6]  

Update key value of 6 as 14 and its parent as 1.
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        Π [6] = 1  

Now all the vertices have been spanned, Using above the table we get Minimum 
Spanning Tree.

0 → 5 → 4 → 3 → 2 → 1 → 6  
[Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1] =2, Π [6] =1]  

Thus the final spanning Tree is

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99
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Experiment No. 9
THEORY

Single sources shortest path algorithm

Dijkstra’s algorithm solves the single-source shortest-path problem when all edges have non-negative

weights.  It  is  a  greedy algorithm and similar  to  Prim’s  algorithm.  Algorithm starts  at  the  source

vertex,s, it grows a tree, T, that ultimately spans all vertices reachable from S. Vertices are added to T

in order of distance i.e., first S, then the vertex closest to S, then the next closest, and so on. Following

implementation assumes that graph G is represented by adjacency lists.

 DIJKSTRA (G, w, s)
1. INITIALIZE SINGLE-SOURCE (G, s)

2. S ← { } // S will ultimately contains vertices of final shortest-path weights from s

3. Initialize priority queue Q i.e., Q ← V[G]

4. while priority queue Q is not empty do

5. u ← EXTRACT_MIN(Q) // Pull out new vertex

6. S ← S È {u} // Perform relaxation for each vertex v adjacent to u for each

vertex v in Adj[u] do

7. Relax (u, v, w)

 ANALYSIS

Like Prim’s algorithm, Dijkstra’s algorithm runs in O(|E|lg|V|) time.

Step by Step operation of Dijkstra algorithm.
Step1. Given initial graph G=(V, E). All nodes nodes have infinite cost except the source node, s,

which has 0 cost.

Step 2. First we choose the node, which is closest to the source node, s. We initialize d[s] to 0. Add it

to S. Relax all nodes adjacent to source, s. Update predecessor (see red arrow in diagram below) for all

nodes updated.

Step 3. Choose the closest node, x. Relax all nodes adjacent to node x. Update predecessors for nodes

u, v and y (again notice red arrows in diagram below).

Step 4. Now, node y is the closest node, so add it to S. Relax node v and adjust its predecessor (red

arrows remember!).
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Step 5. Now we have node u that is closest. Choose this node and adjust its neighbor node v.

Step 6. Finally, add node v. The predecessor list now defines the shortest path from each node to the

source node, s.
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Experiment No. 10

THEORY

Traveling salesman problem

The travelling salesman problem is a graph computational problem where the salesman needs to visit

all cities (represented using nodes in a graph) in a list just once and the distances (represented using

edges in the graph) between all these cities are known. The solution that is needed to be found for this

problem is the shortest possible route in which the salesman visits all the cities and returns to the origin

city.

There are various approaches to find the solution to the travelling salesman problem: naïve approach,

greedy approach,  dynamic  programming approach,  etc.  In  this  tutorial  we will  be  learning about

solving travelling salesman problem using greedy approach

Travelling Salesperson Algorithm

As the definition for greedy approach states, we need to find the best optimal solution locally to figure 

out the global optimal solution. The inputs taken by the algorithm are the graph G {V, E}, where V is 

the set of vertices and E is the set of edges. The shortest path of graph G starting from one vertex 

returning to the same vertex is obtained as the output.

Algorithm
 Travelling salesman problem takes a graph G {V, E} as an input and declare another graph as

the output (say G’) which will record the path the salesman is going to take from one node to another.
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 The algorithm begins by sorting all the edges in the input graph G from the least distance to the

largest distance.

 The first edge selected is the edge with least distance, and one of the two vertices (say A and B)

being the origin node (say A).

 Then among the adjacent edges of the node other than the origin node (B), find the least cost

edge and add it onto the output graph.

 Continue the process with further nodes making sure there are no cycles in the output graph

and the path reaches back to the origin node A.

 However, if the origin is mentioned in the given problem, then the solution must always start

from that node only. Let us look at some example problems to understand this better.

Examples

Consider the following graph with six cities and the distances between them −

From the given graph, since the origin is already mentioned, the solution must always start from that 
node. Among the edges leading from A, A → B has the shortest distance.

Then, B → C has the shortest and only edge between, therefore it is included in the output graph.
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There’s only one edge between C → D, therefore it is added to the output graph.

There’s two outward edges from D. Even though, D → B has lower distance than D → E, B is already 
visited once and it would form a cycle if added to the output graph. Therefore, D → E is added into 

the output graph.
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There’s only one edge from e, that is E → F. ThE

Therefore, it is added into the output graph

Again, even though F → C has lower distance than F → A, F → A is added into the output graph in 

order to avoid the cycle that would form and C is already visited once.

The shortest path that originates and ends at A is A → B → C → D → E → F → A
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The cost of the path is: 16 + 21 + 12 + 15 + 16 + 34 = 114.

Even though, the cost of path could be decreased if it originates from other nodes but the question is
not raised with respect to that.
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