
         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Vision of the Department
To be recognized for keeping innovation, research and excellence abreast of learning in the field

of computer science & engineering to cater the global society.

Mission of the Department

M1:  To provide an exceptional learning environment with academic excellence in the field of
computer science and engineering.

M2:  To facilitate the students for research and innovation in the field of software, hardware
and computer applications and nurturing to cater the global society.

M3:  To establish professional relationships with industrial and research organisations to enable
the students to be updated of the recent technological advancements. 

M4:   To groom the learners for being the software professionals catering the needs of modern
society with ethics, moral values and full of patriotism.  

Program Educational Objectives (PEO’s)

PEO1:  The graduate will have the knowledge and skills of major domains of computer science
and engineering in providing solution to real world problems most efficiently.

PEO2: The graduate will be able to create and use the modern tools and procedures followed in
the software industry in the relevant domain.

PEO3:  The  graduate  will  be  following  the  ethical  practices  of  the  software  industry  and
contributing to the society as a responsible citizen. 

PEO4: The graduate will have the innovative mindset of learning and implementing the latest

             developments and research outcomes in the computer hardware and software to keep pace

             with the fast changing socio economic world.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

LAB OUTCOMES

Student will be able to

CO1: Elaborate basic architecture of JAVA and capabilities of Java Language.

CO2: Illustrate basic concepts of object oriented programming and apply these concepts with the
help of Java Language.

CO3: Update and retrieve the data from the database using JDBC connectivity.

CO4: Develop the graphical user interaction programs.

CO5: Demonstrate development of web based applications with the help of servlets and JSP.

LIST OF EXPERIMENTS

1. Installation of J2SDK 

2. Write a program to show Scope of Variables.

3. Write a program to show Concept of CLASS in JAVA.

4. Write a program to show Type Casting in JAVA 

5. Write a program to show How Exception Handling is in JAVA.

6. Write a Program to show Inheritance.

7. Write a program to show Polymorphism. 

8. Write a program to show Access Specifier (Public, Private, Protected) in JAVA 

9. Write a program to add a Class to a Package.

10. Write a program to hide a Class. 



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT -1

JAVA:

Java is a multi-platform, object-oriented, and network-centric language that can be used as a 
platform in itself. It is a fast, secure, reliable programming language for coding everything from
mobile apps and enterprise software to big data applications and server-side technologies.

INSTALLATION OF J2SDK:

Introduction:

The Java Development Kit (JDK) is software used for Java programming, along with the Java Virtual 
Machine (JVM) and the Java Runtime Environment (JRE). The JDK includes the compiler and class 
libraries, allowing developers to create Java programs executable by the JVM and JRE.

Download Java for Windows 10

Download the latest Java Development Kit installation file for Windows 10 to have the latest 
features and bug fixes.

1. Using your preferred web browser, navigate to the Oracle Java Downloads page.
2. On the Downloads page, click the x64 Installer download link under 
the Windows category. At the time of writing this article, Java version 17 is the latest long-
term support Java version.

Wait for the download to complete.

Install Java on Windows 10

After downloading the installation file, proceed with installing Java on your Windows system.

Follow the steps below:

Step 1: Run the Downloaded File

Double-click the downloaded file to start the installation.

https://www.oracle.com/java/technologies/downloads/#jdk17-windows
https://phoenixnap.com/glossary/what-is-a-compiler


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Step 2: Configure the Installation Wizard

After running the installation file, the installation wizard welcome screen appears.

1. Click Next to proceed to the next step.

2. Choose the destination folder for the Java installation files or stick to the default path. 
Click Next to proceed.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

3. Wait for the wizard to finish the installation process until the Successfully Installed message 
appears. Click Close to exit the wizard.

Set Environmental Variables in Java



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Set Java environment variables to enable program compiling from any directory. To do so, 
follow the steps below:

Step 1: Add Java to System Variables

1. Open the Start menu and search for environment variables.

2. Select the Edit the system environment variables result.

3. In the System Properties window, under the Advanced tab, click Environment Variables…

https://phoenixnap.com/kb/windows-set-environment-variable


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

4. Under the System variables category, select the Path variable and click Edit:



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

5. Click the New button and enter the path to the Java bin directory:



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Note: The default path is usually C:\Program Files\Java\jdk-17.0.1\bin.

6. Click OK to save the changes and exit the variable editing window.

Step 2: Add JAVA_HOME Variable

Some applications require the JAVA_HOME variable. Follow the steps below to create the 
variable:

1. In the Environment Variables window, under the System variables category, click 
the New… button to create a new variable.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

2. Name the variable as JAVA_HOME.

3. In the variable value field, paste the path to your Java jdk directory and click OK.

4. Confirm the changes by clicking OK in the Environment Variables and System 
properties windows.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Test the Java Installation

Run the java -version command in the command prompt to make sure Java installed correctly:

C:\Users\boskom>java -version 

Java version “17.0.1” 2021-10-19 LTS

Java(TM) SE Runtime Environmental (build 17.0.1+12-LTS-39)

Java HotSpot(TM) 64-Bit Server VM (build 17.0.1+12-LTS-39, mixed mode, sharing)

If installed correctly, the command outputs the Java version. Make sure everything works by 
writing a simple program and compiling it.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT -2

VARIABLE AND SCOPE:

Scope of a variable is the part of the program where the variable is accessible. Like 
C/C++, in Java, all identifiers are lexically (or statically) scoped, i.e. Scope of a 
variable can determined at compile time and independent of function call stack. 
Java programs are organized in the form of classes. Every class is part of some 
package. Java scope rules can be covered under following categories.
 

Member Variables (Class Level Scope):
These variables must be declared inside class (outside any function). They can be 
directly accessed anywhere in class. Let’s take a look at an example: 
public class Test

{

    // All variables defined directly inside a class 

    // are member variables

    int a;

    private String b;

    void method1() {....}

    int method2() {....}

    char c;

}

 We can declare class variables anywhere in class, but outside methods.
 Access specified of member variables doesn’t affect scope of them within a 

class.
 Member variables can be accessed outside a class with following rules

Modifier      Package Subclass World



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

public          Yes      YesYes

protected       Yes      YesNo

Default (no
modifier)   Yes       No    No

private         No       NoNo

Variables declared inside a method have method level scope and can’t be accessed outside 
the method. 

public class Test

{

    void method1() 

    {

       // Local variable (Method level scope)

       int x;

    }

}

Note : Local variables don’t exist after method’s execution is over. 
Here’s another example of method scope, except this time the variable got passed in as a 
parameter to the method: 

class Test

{

    private int x;

    public void setX(int x)

    {

this.x = x;

    }

}

The above code uses this keyword   to differentiate between the local and class variables.
As an exercise, predict the output of following Java program.  

 Java

https://www.geeksforgeeks.org/this-reference-in-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

publicclassTest
{
    staticintx = 11;
    privateinty = 33;
    publicvoidmethod1(intx)
    {
        Test t = newTest();
        this.x = 22;
        y = 44;
 
        System.out.println("Test.x: "+ Test.x);
        System.out.println("t.x: "+ t.x);
        System.out.println("t.y: "+ t.y);
        System.out.println("y: "+ y);
    }
 
    publicstaticvoidmain(String args[])
    {
        Test t = newTest();
        t.method1(5);
    }
}

Output: 
Test.x: 22

t.x: 22

t.y: 33

y: 44

Loop Variables (Block Scope) 
A variable declared inside pair of brackets “{” and “}” in a method has scope within the 
brackets only.

 Java

publicclassTest
{
    publicstaticvoidmain(String args[])
    {
        {
            // The variable x has scope within
            // brackets
            intx = 10;
            System.out.println(x);



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

        }
         
        // Uncommenting below line would produce
        // error since variable x is out of scope.
 
        // System.out.println(x);
    }
}

Output: 
10

STUDENT ASSIGNMENT PROGRAMS:

1. Tell whether the below code will run or not.

classTest {

publicstaticvoidmain(String args[])
{
for(inti = 1; i<= 10; i++) {
System.out.println(i);
}
inti = 20;
System.out.println(i);
}
}



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT- 3

CLASS IN JAVA:
1. Class is a set of object which shares common characteristics/ behavior and common 
properties/ attributes.
2. Class is not a real-world entity. It is just a template or blueprint or prototype from which 
objects are created.
3. Class does not occupy memory.
4. Class is a group of variables of different data types and a group of methods.
A class in java can contain:

 data member
 method
 constructor
 nested class and 
 interface

Syntax to declare a class:

access_modifier class<class_name>

{  

    data member;  

    method;  

    constructor;

    nested class;

    interface;

}

Example:

 Animal
 Student
 Bird
 Vehicle
 Company  



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

classStudent {

    intid; // data member (also instance variable)

    String name; // data member (also instance variable)

 

    publicstaticvoidmain(String args[])

    {

        Student s1 = newStudent(); // creating an object of

                                    // Student

        System.out.println(s1.id);

        System.out.println(s1.name);

    }

}

A class is a user-defined blueprint or prototype from which objects are created. It represents 
the set of properties or methods that are common to all objects of one type. In general, class 
declarations can include these components, in order: 

1. Modifiers: A class can be public or has default access (Refer this   for details).

2. Class keyword: class keyword is used to create a class.

3. Class name: The name should begin with an initial letter (capitalized by convention).

4. Superclass(if any): The name of the class’s parent (superclass), if any, preceded by the 
keyword extends. A class can only extend (subclass) one parent.

5. Interfaces(if any): A comma-separated list of interfaces implemented by the class, if any, 
preceded by the keyword implements. A class can implement more than one interface.

6. Body: The class body is surrounded by braces, { }.

Constructors are used for initializing new objects. Fields are variables that provide the state 
of the class and its objects, and methods are used to implement the behavior of the class and 
its objects.
There are various types of classes that are used in real-time applications such as  nested 
classes  , anonymous classes  , lambda expressions  .

https://www.geeksforgeeks.org/lambda-expressions-java-8/
https://www.geeksforgeeks.org/anonymous-inner-class-java/
https://www.geeksforgeeks.org/inner-class-java/
https://www.geeksforgeeks.org/inner-class-java/
https://www.geeksforgeeks.org/access-specifiers-for-classes-or-interfaces-in-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT – 4

JAVA TYPE CASTING:
In Java, type casting is a method or process that converts a data type into another data type in 
both ways manually and automatically. The automatic conversion is done by the compiler and 
manual conversion performed by the programmer. In this section, we will discuss type 
casting and its types with proper examples.

Type casting

     Convert a value from one data type to another data type is known as type casting.

Types of Type Casting

     There are two types of type casting:

o Widening Type Casting
o Narrowing Type Casting

Widening Type Casting

Converting a lower data type into a higher one is called widening type casting. It is also known
as implicit conversion or casting down. It is done automatically. It is safe because there is no
chance to lose data. It takes place when:

o Both data types must be compatible with each other.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

o The target type must be larger than the source type.
1. byte -> short -> char -> int -> long -> float -> double  

For  example,  the  conversion  between  numeric  data  type  to  char  or  Boolean  is  not  done
automatically. Also, the char and Boolean data types are not compatible with each other. Let's
see an example.

WideningTypeCastingExample.java

1. public class WideningTypeCastingExample  
2. {  
3. public static void main(String[] args)  
4. {  
5. int x = 7;  
6. //automatically converts the integer type into long type  
7. long y = x;  
8. //automatically converts the long type into float type  
9. float z = y;  
10. System.out.println("Before conversion, int value "+x);  
11. System.out.println("After conversion, long value "+y);  
12. System.out.println("After conversion, float value "+z);  
13. }  
14. }  

Output

Before conversion,the value is: 7
After conversion, the long value is: 7
After conversion, the float value is: 7.0

In the above example, we have taken a variable x and converted it into a long type. After that, 
the long type is converted into the float type.

Narrowing Type Casting

Converting a higher data type into a lower one is called narrowing type casting. It  is  also
known as explicit conversion or casting up. It is done manually by the programmer. If we do
not perform casting then the compiler reports a compile-time error.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

1. double -> float -> long -> int -> char -> short -> byte  

Let's see an example of narrowing type casting.

In the following example, we have performed the narrowing type casting two times. First, we
have converted the double type into long data type after that long data type is converted into int
type.

NarrowingTypeCastingExample.java

1. public class NarrowingTypeCastingExample  
2. {  
3. public static void main(String args[])  
4. {  
5. double d = 166.66;  
6. //converting double data type into long data type  
7. long l = (long)d;  
8. //converting long data type into int data type  
9. int i = (int)l;  
10. System.out.println("Before conversion: "+d);  
11. //fractional part lost  
12. System.out.println("After conversion into long type: "+l);  
13. //fractional part lost  
14. System.out.println("After conversion into int type: "+i);  
15. }  
16. }  

Output

Before conversion: 166.66

After conversion into long type: 166

After conversion into int type: 166



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT – 5

Exception Handling is in JAVA:

The ExceptionHandlinginJava is one of the powerful mechanismto handle the runtimeerrors so
that the normal flow of the application can be maintained.

In this  tutorial,  we will  learn about  Java exceptions,  it's  types,  and the difference between
checked and unchecked exceptions.

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy inherited by two
subclasses: Exception and Error. The hierarchy of Java Exception classes is given below:



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Types of Java Exceptions:

There are mainly two types of exceptions: checked and unchecked. An error is considered as
the unchecked exception. However, according to Oracle, there are three types of exceptions
namely:

1. Checked Exception
2. Unchecked Exception
3. Error

Difference between Checked and Unchecked Exceptions

1) Checked Exception:



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

The classes that directly inherit the Throwable class except RuntimeException and Error are
known  as  checked  exceptions.  For  example,  IOException,  SQLException,  etc.  Checked
exceptions are checked at compile-time.

2) Unchecked Exception:

The  classes  that  inherit  the  RuntimeException  are  known  as  unchecked  exceptions.  For
example, ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException, etc.
Unchecked exceptions are not checked at compile-time, but they are checked at runtime.

3) Error:

Error is irrecoverable. Some example of errors are OutOfMemoryError, VirtualMachineError,
AssertionError etc.

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table describes each.

Keyword Description

try The "try" keyword is used to specify a block where we should place an
exception code. It means we can't use try block alone. The try block must
be followed by either catch or finally.

catch The "catch" block is used to handle the exception. It must be preceded by
try block which means we can't use catch block alone. It can be followed by
finally block later.

finally The "finally" block is used to execute the necessary code of the program. It
is executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It specifies that there
may occur an exception in the method. It doesn't throw an exception. It is
always used with method signature.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Java Exception Handling Example

Let's see an example of Java Exception Handling in which we are using a try-catch statement to
handle the exception.

JavaExceptionExample.java

public class JavaExceptionExample{  
  public static void main(String args[]){  
   try{  
      //code that may raise exception  
      int data=100/0;  
   }catch(ArithmeticException e){System.out.println(e);}  
   //rest code of the program   
   System.out.println("rest of the code...");  
  }  
}  
Output:

Exception in thread main java.lang.ArithmeticException:/ by zero rest of the code . . . 

EXPERIMENT – 6

INHERITANCE:

Java, Inheritance is an important pillar of OOP(Object-Oriented Programming). It is the 
mechanism in Java by which one class is allowed to inherit the features(fields and methods) 
of another class. In Java, Inheritance means creating new classes based on existing ones.  A 
class that inherits from another class can reuse the methods and fields of that class. In 
addition, you can add new fields and methods to your current class as well.  

Why Do We Need Java Inheritance?
 Code Reusability: The code written in the Superclass is common to all subclasses. 

Child classes can directly use the parent class code.
 Method Overriding: Method Overriding is achievable only through Inheritance. It is 

one of the ways by which Java achieves Run Time Polymorphism.
 Abstraction: The concept of abstract where we do not have to provide all details is 

achieved through inheritance. Abstraction only shows the functionality to the user.

How to Use Inheritance in Java?

https://www.geeksforgeeks.org/abstraction-in-java-2/
https://www.geeksforgeeks.org/overriding-in-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

The extends keyword is used for inheritance in Java. Using the extends keyword indicates
you  are  derived  from  an  existing  class. In  other  words,  “extends”  refers  to  increased
functionality.
Syntax : 

class derived-class extends base-class  

{  

 //methods and fields  

}  

Inheritance in Java Example
In the below example of inheritance, class Employee is a base class, class Engineer is a 
derived class that extends the Employee class and class Test is a driver class to run the 
program.
importjava.io.*;

  
// Base or Super Class
classEmployee {
    intsalary = 60000;
}
  
// Inherited or Sub Class
classEngineer extendsEmployee {
    intbenefits = 10000;
}
  
// Driver Class
classGfg {
    publicstaticvoidmain(String args[])
    {
        Engineer E1 = newEngineer();
        System.out.println("Salary : "+ E1.salary
                           + "\nBenefits : "+ E1.benefits);
    }
}

Output:

Salary : 60000

Benefits : 10000



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

In practice, inheritance, and polymorphism   are used together in Java to achieve fast 
performance and readability of code.

Java Inheritance Types
Below are the different types of inheritance which are supported by Java.

1. Single Inheritance
2. Multilevel Inheritance
3. Hierarchical Inheritance
4. Multiple Inheritance
5. Hybrid Inheritance

1. Single Inheritance
In single inheritance, subclasses inherit the features of one superclass. In the image below, 
class A serves as a base class for the derived class B.

2. Multilevel Inheritance
In Multilevel Inheritance, a derived class will be inheriting a base class, and as well as the
derived class also acts as the base class for other classes. In the below image, class A serves
as a base class for the derived class B, which in turn serves as a base class for the derived
class C. In Java, a class cannot directly access the grandparent’s members.

https://www.geeksforgeeks.org/g-fact-91/
https://www.geeksforgeeks.org/polymorphism-in-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

3.

Hierarchical Inheritance
In Hierarchical Inheritance, one class serves as a superclass (base class) for more than one
subclass. In the below image, class A serves as a base class for the derived classes B, C, and
D.

4. Multiple Inheritance (Through Interfaces)
In Multiple inheritances, one class can have more than one superclass and inherit features
from  all  parent  classes.  Please  note  that  Java  does not support multiple  inheritances with
classes. In Java, we can achieve multiple inheritances only through Interfaces. In the image
below, Class C is derived from interfaces A and B.

https://www.geeksforgeeks.org/interfaces-in-java/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

5. Hybrid Inheritance(Through Interfaces)
It  is  a mix of two or more of the above types of inheritance.  Since Java doesn’t  support
multiple  inheritances with classes,  hybrid inheritance is  also not  possible  with classes.  In
Java,  we  can  achieve  hybrid  inheritance  only  through Interfaces.
 

https://www.geeksforgeeks.org/interfaces-in-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

1. Single Inheritance
importjava.io.*;
importjava.lang.*;
importjava.util.*;
  
// Parent class
classone {
    publicvoidprint_geek()
    {
        System.out.println("Geeks");
    }
}
  
classtwo extendsone {
    publicvoidprint_for() { System.out.println("for"); }
}
  
// Driver class
publicclassMain {
      // Main function
    publicstaticvoidmain(String[] args)
    {
        two g = newtwo();
        g.print_hello ();
        g.print_my();
        g.print_friends();
    }
}

Output:

hello

my

friends



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT – 7

POLYMORPHISM:

The word polymorphism means having many forms. In simple words, we can define 
polymorphism as the ability of a message to be displayed in more than one form.  

Real-life Illustration: Polymorphism
A person at the same time can have different characteristics. Like a man at the same time is a 
father, a husband, an employee. So the same person possesses different behavior in different 
situations. This is called polymorphism. 
Polymorphism is considered one of the important features of Object-Oriented Programming. 
Polymorphism allows us to perform a single action in different ways. In other words, 
polymorphism allows you to define one interface and have multiple implementations. The 
word “poly” means many and “morphs” means forms, So it means many forms.

Types of polymorphism
In Java polymorphism is mainly divided into two types: 

 Compile-time Polymorphism
 Runtime Polymorphism

Type 1: Compile-time polymorphism
It is also known as static polymorphism. This type of polymorphism is achieved by function 
overloading or operator overloading. 

Note: But Java doesn’t support the Operator Overloading.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Method Overloading: When there are multiple functions with the same name but different 
parameters then these functions are said to be overloaded. Functions can be overloaded by 
changes in the number of arguments or/and a change in the type of arguments.

classHelper {
 
    // Method with 2 integer parameters
    staticintMultiply(inta, intb)
    {
 
        // Returns product of integer numbers
        returna * b;
    }
 
    // Method 2
    // With same name but with 2 double parameters
    staticdoubleMultiply(doublea, doubleb)
    {
 
        // Returns product of double numbers
        returna * b;
    }
}
 
// Class 2
// Main class
classGFG {
 
    // Main driver method
    publicstaticvoidmain(String[] args)
    {
 
        // Calling method by passing
        // input as in arguments
        System.out.println(Helper.Multiply(2, 4));
        System.out.println(Helper.Multiply(5.5, 6.3));
    }
}

Output:

8

34.65



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Subtypes of Compile-time Polymorphism:
1. Function Overloading: It is a feature in C++ where multiple functions can have the 

same name but with different parameter lists. The compiler will decide which function to call 
based on the number and types of arguments passed to the function.

2. Operator Overloading: It is a feature in C++ where the operators such as +, -, * etc. 
can be given additional meanings when applied to user-defined data types.

3. template: it is a powerful feature in C++ that allows us to write generic functions and 
classes. A template is a blueprint for creating a family of functions or classes.
Type 2: Runtime polymorphism
It is also known as Dynamic Method Dispatch. It is a process in which a function call to the 
overridden method is resolved at Runtime. This type of polymorphism is achieved by Method
Overriding. Method overriding  , on the other hand, occurs when a derived class has a 
definition for one of the member functions of the base class. That base function is said to 
be overridden.

Example:

classParent {
 
    // Method of parent class
    voidPrint()
    {
 
        // Print statement
        System.out.println("parent class");
    }
}
 
// Class 2
// Helper class
classsubclass1 extendsParent {
 
    // Method
    voidPrint() { System.out.println("subclass1"); }
}
 
// Class 3
// Helper class
classsubclass2 extendsParent {
 
    // Method
    voidPrint()
    {

https://www.geeksforgeeks.org/overriding-in-java/
https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

 
        // Print statement
        System.out.println("subclass2");
    }
}
 
// Class 4
// Main class
classGFG {
 
    // Main driver method
    publicstaticvoidmain(String[] args)
    {
 
        // Creating object of class 1
        Parent a;
 
        // Now we will be calling print methods
        // inside main() method
 
        a = newsubclass1();
        a.Print();
 
        a = newsubclass2();
        a.Print();
    }
}

Output: 

subclass1

subclass2

Output explanation: 

Here in this program, When an object of child class is created, then the method inside the 
child class is called. This is because The method in the parent class is overridden by the child 
class. Since The method is overridden, This method has more priority than the parent method 
inside the child class. So, the body inside the child class is executed.

Subtype of Run-time Polymorphism:
1. Virtual functions: It allows an object of a derived class to behave as if it were an 

object of the base class. The derived class can override the virtual function of the base class 
to provide its own implementation. The function call is resolved at runtime, depending on the
actual type of the object.
Diagram – 



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Fig – Types of polymorphism

Polymorphism in Java is a concept that allows objects of different classes to be treated as 
objects of a common class. It enables objects to behave differently based on their specific 
class type.

Advantages of Polymorphism in Java:

1. Increases code reusability by allowing objects of different classes to be treated as 
objects of a common class.

2. Improves readability and maintainability of code by reducing the amount of code that 
needs to be written and maintained.

3. Supports dynamic binding, enabling the correct method to be called at runtime, based 
on the actual class of the object.

4. Enables objects to be treated as a single type, making it easier to write generic code that
can handle objects of different types.

Disadvantages of Polymorphism in Java:

1. Can make it more difficult to understand the behavior of an object, especially if the 
code is complex.

2. May lead to performance issues, as polymorphic behavior may require additional 
computations at runtime.



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

EXPERIMENT – 8

Access Specifier (Public, Private, Protected) in JAVA:

in Java, Access modifiers help to restrict the scope of a class, constructor, variable, method, 
or data member. It provides security, accessibility, etc to the user depending upon the access 
modifier used with the element. Let us learn about Java Access Modifiers, their types, and the
uses of access modifiers in this article.

Types of Access Modifiers in Java:

There are four types of access modifiers available in Java: 

1. Default – No keyword required
2. Private
3. Protected
4. Public

1. Default Access Modifier

When no access modifier is specified for a class, method, or data member – It is said to be 
having the default access modifier by default. The data members, classes, or methods that are
not declared using any access modifiers i.e. having default access modifiers are 
accessible only within the same package.

Program 1:
// Java program to illustrate default modifier 
packagep1; 
  
// Class Geek is having Default access modifier 
classGeek 
{ 
    voiddisplay() 
    { 
        System.out.println("Hello World!"); 
    } 
} 

Program 2:
// Java program to illustrate error while 

// using class from different package with 
// default modifier 
packagep2; 



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

importp1.*; 
  
// This class is having default access modifier 
classGeekNew 
{ 
    publicstaticvoidmain(String args[]) 
    { 
        // Accessing class Geek from package p1 
        Geek obj = newGeek(); 
  
        obj.display(); 
    } 
} 

Output:

Compile time error

 

2. Private Access Modifier
The private access modifier is specified using the keyword private. The methods or data 
members declared as private are accessible only within the class in which they are declared.

 Any other class of the same package will not be able to access these members.
 Top-level classes or interfaces can not be declared as private because
 private means “only visible within the enclosing class”.
 protected means “only visible within the enclosing class and any subclasses”
Hence these modifiers in terms of application to classes, apply only to nested classes and not 
on top-level classes

In this example, we will create two classes A and B within the same package p1. We will 
declare a method in class A as private and try to access this method from class B and see the 
result.

packagep1; 
  
classA 
{ 
privatevoiddisplay() 
    { 
        System.out.println("GeeksforGeeks"); 
    } 
} 
  



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

classB 
{ 
publicstaticvoidmain(String args[]) 
    { 
        A obj = newA(); 
        // Trying to access private method
        // of another class 
        obj.display(); 
    } 
} 

Output:
error: display() has private access in A

obj.display();

3. Protected Access Modifier
The protected access modifier is specified using the keyword protected.
The methods or data members declared as protected are accessible within the same package 
or subclasses in different packages.

In this example, we will create two packages p1 and p2. Class A in p1 is made public, to 
access it in p2. The method display in class A is protected and class B is inherited from class 
A and this protected method is then accessed by creating an object of class B.

Program 1:

// Java program to illustrate 
// protected modifier 
packagep1; 
  
// Class A 
publicclassA 
{ 
protectedvoiddisplay() 
    { 
        System.out.println("hello friends"); 
    } 
} 

Program 2:

// Java program to illustrate 
// protected modifier 
packagep2; 



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

importp1.*; // importing all classes in package p1 
  
// Class B is subclass of A 
classB extendsA 
{ 
publicstaticvoidmain(String args[]) 
{ 
    B obj = newB(); 
    obj.display(); 
} 
      
} 

Output:
hello friends



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

Expirement-9

Class:

A class in Java is a logical template to create objects that share common properties and methods. 
Hence, all objects in a given class will have the same methods or properties.

Class to a Package:

The packages are used for categorization of the same type of classes and interface in a single unit.
There is no core or in-built classes that belong to unnamed default package. To use any classes or 
interface in other class, we need to use it with their fully qualified type name. But some time, 
we’ve the need to use all or not all the classes or interface of a package then it’s a tedious job to 
use in such a way discussed. Java supports imports statement to bring entire package, or certain 
classes into visibility. It provides flexibility to the programmer to save a lot of time just by 
importing the classes in his/her program, instead of rewriting them.

In a Java source file, import statements occur immediately following the package statement (if it
exists) and must be before of any class definitions. This is the general form is as follows:

Built-in Packages:

The Java API is a library of prewritten classes, that are free to use, included in the Java 
Development Environment.

The library contains components for managing input, database programming, and much much 
more. The complete list can be found at Oracles website:

The library is divided into packages and classes. Meaning you can either import a single class 
(along with its methods and attributes), or a whole package that contain all the classes that 
belong to the specified package.

Syntax:

import package.name.Class;   // Import a single class

import package.name.*;   // Import the whole package

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language


         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

program:

package p1;  
class C1()  
{  
public void m1()  
{  

System.out.println("m1 of C1");  
}  

public static void main(string args[])  
{  
C1 obj = new C1();  
obj.m1();  
}  
}  



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

            

Experiment- 10

Hiding Class

Hidden classes are classes that cannot be used directly by the bytecode or other classes. Even 
though it's mentioned as a class, it should be understood to mean either a hidden class or 
interface. It can also be defined as a member of the access control nest and can be unloaded 
independently of other classes

How to Write Hidden Classes

The hidden class is created by invoking 

Lookup::defineHiddenClass

. It causes the JVM to derive a hidden class from the supplied bytes, links the hidden class, and 
returns a Lookup object that provides reflective access to the hidden class.

The following are 4 steps for creating and using hidden classes.

1.Create Lookup object. Get a lookup object, which will be used to create hidden class in the 
next steps.

MethodHandles.Lookup lookup = MethodHandles.lookup();

2.Create class bytes using ASM. We are using the byte code manipulation library ASM. We 
create ClassWriter object using helper class GenerateClass. If you look at the details in 
GenerateClass, this class implements interface Test, which we will use in further steps.

ClassWritercw = GenerateClass.getClassWriter(HiddenClassDemo.class);

byte[] bytes = cw.toByteArray(); 

3.Define hidden class. In this step, we are creating a hidden class. It is important to note the 
invoking program should store the lookup object carefully since it is the only way to obtain the 
Class object of the hidden class.

Class<?> c = lookup.defineHiddenClass(bytes, true, NESTMATE).lookupClass();



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

4.Use hidden class. In this step, we are using reflection to access the hidden class. First, create 
the constructor, then create an object using this, typecast this object to interface Test and call 
method test. This method ignores the argument passed and prints "Hello test" to the console.

Constructor<?> constructor = c.getConstructor(null);

Object object = constructor.newInstance(null);

Test test = (Test) object;

test.test(new String[]{""});

How to Hide Class in a Package
When we import a package using astric(*),all  public  classes are imported.however ,we may
preffer to “not import”certainclasses.i.e,we may like to hide these classes from accessing from
outside of the package.such classes should be declared”not public”.

EX:

package p1;
public class X
{
Body of X
}

class Y
{
Body of Y
}

Here, the class y which is not declared public is hidden from out side of the package p1. this
class can be seen and used only by other classes in the same package note that a java source file
should contain only one public class and may include any number of non public classes.

Now ,consider the following code ,which imports the package p1 that contains classes X and Y:



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & SCIENCE, BHOPAL

CS-306

JAVA

import p1.*;

X objectX;

Y objectY;

Java compiler would generate an error message for this code because the class Y,which has not
been declared public,is not imported and therefore not available for creating its objects.


	Download Java for Windows 10
	Install Java on Windows 10
	Step 1: Run the Downloaded File
	Step 2: Configure the Installation Wizard

	Set Environmental Variables in Java
	Step 1: Add Java to System Variables
	Step 2: Add JAVA_HOME Variable

	Test the Java Installation
	Type casting
	Types of Type Casting
	Widening Type Casting
	Narrowing Type Casting

	Hierarchy of Java Exception classes
	Types of Java Exceptions:

	Difference between Checked and Unchecked Exceptions
	1) Checked Exception:
	2) Unchecked Exception:
	3) Error:

	Java Exception Keywords
	Java Exception Handling Example
	Why Do We Need Java Inheritance?
	How to Use Inheritance in Java?
	Inheritance in Java Example
	In the below example of inheritance, class Employee is a base class, class Engineer is a derived class that extends the Employee class and class Test is a driver class to run the program.
	Java Inheritance Types
	1. Single Inheritance
	2. Multilevel Inheritance
	3. Hierarchical Inheritance
	4. Multiple Inheritance (Through Interfaces)
	5. Hybrid Inheritance(Through Interfaces)
	1. Single Inheritance
	Advantages of Polymorphism in Java:
	Disadvantages of Polymorphism in Java:

	Types of Access Modifiers in Java:
	2. Private Access Modifier
	3. Protected Access Modifier

	Built-in Packages:
	How to Hide Class in a Package

